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Abstract 

Crowd simulation has been regarded as an important research 
topic in computer graphics, computer vision, and related areas. 
Various approaches have been proposed to simulate real life 
scenarios. In this paper, a novel framework that evaluates the 
accuracy and the realism of crowd simulation algorithms is 
presented. The framework is based on the concept of 
recreating real video scenes in 3D environments and applying 
crowd and pedestrian simulation algorithms to the agents 
using a plug-in architecture. The real videos are compared 
with recorded videos of the simulated scene and novel Human 
Visual System (HVS) based similarity features and metrics are 
introduced in order to compare and evaluate simulation 
methods. The experiments show that the proposed framework 
provides efficient methods to evaluate crowd and pedestrian 
simulation algorithms with high accuracy and low cost. 

1.  Introduction 
Crowd simulation is widely used for entertainment, education, 
emergency training, architectural design, urban planning, 
traffic engineering and numerous other applications. In most 
simulations a large number of agents are usually represented. 
The agents are expected to behave with human like actions, 
inside virtual surroundings avoiding obstacles and interacting 
with the environment or other agents. The necessity to have 
realistic crowd simulations has become increasingly important 
in such applications.  

The modeling methods for crowd simulation can be 
separated into macroscopic and microscopic. Specifically, the 
movement features of the whole crowd are the main 
characteristic of the macroscopic algorithms [1, 2]. 
Microscopic methods [3, 4], operate on an individual level and 
are focused on including psychological and social behaviors, 
interaction among pedestrians, and individual decision making 
processes. Therefore, most of the current approaches are based 
on microscopic agent models providing more accurate and 
realistic simulation results than the macroscopic approaches. 

However, one of the main problems is on estimating the 
accuracy of realism in a given crowd simulation. The current 
ways of evaluating the accuracy of crowd simulation methods 
are by manually extracting the ground truth and comparing it 
with the simulation. This approach can provide reasonable 
estimates, but there are significant limitations since it is a time 

consuming process. Also these approaches cannot provide any 
indication of realism. An evaluation framework for crowd 
behavior simulation is proposed that correctly measures the 
precision of a given algorithm. This framework can determine 
the accuracy of any approach by introducing novel vision 
based features obtained from video sequences. 

This paper is organized as follows: in Section 2 some 
related works are presented. Section 3 describes the proposed 
framework as well as the novel Human Visual System (HVS) 
based similarity features and metrics. In Section 4 the 
evaluation process of the proposed framework is discussed and 
experiments using different scenes are presented. Finally in 
Section 5 the conclusions are addressed. 

2. Related Work 
One of the first agent-based simulation algorithms was 
proposed by Reynolds in [5] focusing on birds’ flocking 
simulation. This approach was comparable to a particle system, 
where agents are acting based on the environment, and they are 
influenced by other agents, according to a set of rules such as 
gravity. This paper also introduces the term boid, which has 
been used to name artificial beings from that point onwards. 
The O(n2) complexity of the traversal algorithm was the major 
deficiency mainly due to the requirement to complete the 
proximity tests for each agent.  

Later Helbing and Molnar [6] introduced social forces, 
which became widely successful because they could 
attractively emulate numerous common attributes seen in 
pedestrian movements and behaviors. Also, based on the 
principles of social forces, agents obtain the fundamental 
ability of how to navigate around other agents, obstacles, walls 
and various other obstructions. Over the last decades many 
crowd and pedestrian simulation techniques have been 
developed, but most of them are not concerned on the realism 
of simulation. Papers like [7, 8, 9, 25, 26] are primarily 
focusing on the performance of the algorithms, utilizing 
standard complexity metrics to evaluate them. By contrast, the 
proposed framework is focusing on estimating and evaluating 
the accuracy of realism in different simulations.  

In order to evaluate the realism of a crowd or pedestrian 
simulation algorithm, vision based features and metrics are 
introduced in this framework. Motion estimation and tracking 
are few of the vision based steps applied during the process of 
pedestrian and crowd behavior analysis for visual surveillance 
in dynamic scenes. The majority of today’s optical flow 
methods strongly resemble the original formulation of Horn 



and Schunck in [10] and the one from Lucas and Kanade in 
[11]. The accuracy of optical flow estimation algorithms has 
been improving significantly over the last decade and one of 
the state of the art methods is the work of Sun et al in [12]. 
Regarding the tracking of pedestrians and crowds it is worth 
mentioning the methods suggested in [13] and [14]. These 
techniques can be used for tracking the flux of people at 
important public areas such as stores and travel sites, which can 
be automatically computed, providing congestion analysis to 
assist in the management of the people [15, 16]. 

A technique that incorporates optical flow for accuracy 
evaluation in crowd simulation was proposed in [17]. In this 
work the solution proposed to relate optical flow to physical 
velocity is to average the estimates of optical flow over regions 
of the image and then to empirically relate the average flow 
values to average physical velocity values by using physical 
velocity values determined by hand counting methods. The 
main issue of this approach is that it requires manual 
annotation and it performs well only is specific relative 
orientations of camera and pedestrians.  

 
Fig. 1. Representation of the process to obtain the simulated 3D scene 

using the proposed scene design tool.  

In other approaches, in order to evaluate the simulation 
accuracy, ground truth is obtained using mobile device tracking 
techniques [18]. In these cases obtaining the ground truth is 
either a time consuming process without allowing the 
incorporation of a large amount of scenarios or due to ethics 
and privacy restrictions the required data are not available. In 
many cases the estimation of the number of collisions 
occurring during the simulation process is utilized as a 
performance metric alongside with the required CPU or GPU 
processing power and time [7, 8, 27, 28]. All these approaches 
for pedestrian and crowd simulation evaluation either do not 
consider the realism parameter focusing on the performance or 
are applicable only to a small subset of scenes and scenarios. 
Furthermore, none of these methods considers Human Visual 
System (HVS) based similarity features and metrics, which are 
introduced in this work alongside the proposed novel 

framework for crowd simulation evaluation based on the 
accuracy and the realism of the algorithms. 

3. Proposed pedestrian and crowd evaluation 
Framework 
The proposed framework allows the comparison of pedestrian 
and crowd simulation algorithms without any of the above 
restriction providing a novel similarity measurement. The 
requirements of this new framework are the availability of real 
footage of the observed scene or scenario using standard RGB 
or CCTV cameras, and an approximation of the 3D 
environment including the knowledge of the available exits and 
entrances. During the first step of the proposed novel 
framework, a 3D replica of the observed scene is designed 
using the tools provided from the framework (3D design tool). 
Basic primitives are utilized to build the scene such as cubes, 
cylinders etc., while for the texturing samples from the real 
video sequence are incorporated. Since the 3D scene is 
available the camera location and orientation are selected to be 
the same as in the real scene; and the entering and exiting 
locations are specified (see figure 1).  

Regarding the simulation algorithm that is under evaluation it 
has been developed as a plugin in the proposed framework, 
obtaining the scene details and the related metadata as input 
parameters returning as output the simulation state in every 
frame. Based on this approach a new video sequence is 
obtained showing the simulated scene and the moving agents 
simulating the pedestrians’ or the crowd’s behavior rendered 
from the same point of view as in the real scene. Also, it should 
be mentioned that the proposed framework allows multiple 
algorithms for pedestrian and crowd simulation to be tested and 
evaluated under the same condition on the same scenarios. The 
system provides mechanisms to import and export scenes 
allowing the distribution of the evaluation scenes and the 
obtained results. A full description of the proposed framework 
is shown in figures 2 and 3 indicating all the related steps. 

 
Fig. 2. Analysis of the proposed framework and the evaluation process. 
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Fig. 3. Detailed analysis of the benchmarking process during the comparison of real and simulated videos 

In more detail, since the 3D scene is designed using the 
tools provided by the proposed framework, the real and the 
simulated video sequences are used to extract features in order 
to measure their level of similarity. These features are obtained 
from the optical flow and the tracklets of the estimated moving 
objects in both sequences. 

3.1 Optical Flow and Tracklet Estimation 
An optical flow method tries to calculate the motion between 
two image frames which are taken at times t and t + δt at every 
pixel position [11]. Let a pixel at location (x, y, t) with intensity 
I(x, y, t) be moved by δx, δy and δt between the two frames, the 
following image constraint equation can be derived 

𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = 𝐼𝐼(𝑥𝑥 + 𝑎𝑎𝑥𝑥,𝑦𝑦 + 𝑎𝑎𝑦𝑦, 𝑡𝑡 + 𝑎𝑎𝑡𝑡) (1) 

Assuming the movement to be small enough, the image 
constraint at I(x,y,t) can be developed with Taylor series 
resulting in 

𝐼𝐼(𝑥𝑥 + 𝑎𝑎𝑥𝑥,𝑦𝑦 + 𝑎𝑎𝑦𝑦, 𝑡𝑡 + 𝑎𝑎𝑡𝑡) = 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑡𝑡) + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝛿𝛿𝑥𝑥 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝛿𝛿𝑦𝑦 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝛿𝛿𝑡𝑡 
(2) 

The equation below is derived 

𝐼𝐼𝜕𝜕𝑉𝑉𝜕𝜕 + 𝐼𝐼𝜕𝜕𝑉𝑉𝜕𝜕 = −𝐼𝐼𝜕𝜕  (3) 

where Vx, Vy, are the x and y components of the velocity or 
optical flow of I(x, y, t) and Ix, Iy and It are the derivatives of 
the image at (x, y, t) in the corresponding directions. The 
solution as given by Lucas and Kanade is a non-iterative 
method, which assumes a locally constant flow. Assuming that 
the flow (Vx, Vy) is constant in a small window of size m×m 
with m > 1, centred at pixel x, y and numbering the pixels as 
1...n, a set of equations is obtained 

�
𝐼𝐼𝜕𝜕1 𝐼𝐼𝜕𝜕1
⋮ ⋮
𝐼𝐼𝜕𝜕𝑥𝑥 𝐼𝐼𝜕𝜕𝑥𝑥

� �
𝑉𝑉𝜕𝜕
𝑉𝑉𝜕𝜕
� = �

−𝐼𝐼𝜕𝜕1
⋮

−𝐼𝐼𝜕𝜕𝑥𝑥
�   ⇒   𝐴𝐴𝑀𝑀��⃗ = −𝑏𝑏 ⇒  𝑀𝑀��⃗ =

(𝐴𝐴𝑇𝑇𝐴𝐴)−1𝐴𝐴𝑇𝑇(−𝑏𝑏)  (4) 

This means that the optical flow can be found by calculating 
the derivatives of the image in all three dimensions. A 
weighting function W(i, j), with i, j ∈[1,…,m] could be added 

to give more prominence to the centre pixel of the window. 
Gaussian functions are preferred for this purpose, but other 
functions or weighting schemes are also possible. Besides, for 
computing local translations, the flow model can be extended 
to affine image deformations. Black and Anandan in [12], 
describe how the single motion assumption, as well as the 
constant brightness constraint are not always valid. They 
discuss how these assumptions can be relaxed in order to 
develop a more robust estimation framework. 

Regarding the tracklet estimation many algorithms are 
available in the literature based on motion or other features and 
using particle and Kalman filters [13, 14, 19, 24]. Specifically, 
the problem of motion-based object tracking is divided into the 
part of detecting the moving objects in each frame and then 
associating the detections corresponding to the same object 
over time. Gaussian mixture models are used to apply 
background subtraction and the noise is eliminated using 
morphological operations on the obtained foreground mask. 

In case of Kalman filters, the track's location in each frame 
is predicted and the likelihood of each detection assigned to 
each track is determined. The Kalman filter is a recursive 
estimator and this means that only the estimated state from the 
previous time step and the current measurement are needed to 
compute the estimate for the current state. The Kalman filter 
has two distinctive features. One is that its mathematical model 
is described in terms of state-space concepts. Another is that 
the solution is computed recursively. Usually, the Kalman filter 
is described by a system state model and a measurement 
model. The state-space model is described as a system state 
model and measurement model as shown in (5) and (6) 
respectively. 

𝑠𝑠(𝑡𝑡) = 𝑂𝑂(𝑡𝑡 − 1)𝑠𝑠(𝑡𝑡 − 1) + 𝑤𝑤(𝑡𝑡)  (5) 

𝑧𝑧(𝑡𝑡) = 𝐻𝐻(𝑡𝑡)𝑠𝑠(𝑡𝑡) + 𝑣𝑣(𝑡𝑡)   (6) 

where O(t-1) and H(t) are the state transition matrix and 
measurement matrix respectively. The w(t) and v(t) are white 
Gaussian noise with zero mean.  

Kalman filters have two phases: prediction step and 
correction step. The prediction step is responsible for 
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projecting forward the current state, obtaining a prior estimate 
of the state S-(t). The task of the correction step is for the 
feedback. It incorporates an actual measurement into the prior 
estimate to obtain an improved posterior estimate S+(t), which 
is written as shown in (7). 

𝑆𝑆+(𝑡𝑡) = 𝑆𝑆−(𝑡𝑡) + 𝑘𝑘(𝑡𝑡)[𝑧𝑧(𝑡𝑡) − 𝐻𝐻(𝑡𝑡)𝑆𝑆−(𝑡𝑡)]  (7) 

where k(t) is the weighting and is described as shown in (8) 

𝑘𝑘(𝑡𝑡) = 𝑝𝑝−(𝑡𝑡)𝐻𝐻(𝑡𝑡)𝑇𝑇[𝐻𝐻(𝑡𝑡)𝑝𝑝−(𝑡𝑡)𝐻𝐻(𝑡𝑡)𝑇𝑇 + 𝑅𝑅(𝑡𝑡)]−1 (8) 

In (8) p-(t) is priori estimate error covariance. It is defined as 
shown in (9). 

𝑝𝑝−(𝑡𝑡) = 𝐸𝐸[𝑒𝑒−(𝑡𝑡)𝑒𝑒−(𝑡𝑡)𝑇𝑇]   (9) 

where 𝑒𝑒−(𝑡𝑡) = 𝑠𝑠(𝑡𝑡) − 𝑠𝑠−(𝑡𝑡) is the prior estimate error. In 
addition, the posteriori estimate error covariance is defined as 
shown in (10).  

𝑝𝑝+(𝑡𝑡) = 𝐸𝐸[𝑒𝑒+(𝑡𝑡)𝑒𝑒+(𝑡𝑡)𝑇𝑇]   (10) 

where 𝑒𝑒+(𝑡𝑡) = 𝑠𝑠(𝑡𝑡) − 𝑠𝑠+(𝑡𝑡) is the posteriori estimate error. 
The prediction step and correction step are executed 
recursively in the definitions as shown in (11), (12), (13), (14) 
and (15).  

Prediction step: 

𝑠𝑠−(𝑡𝑡) = 𝑂𝑂(𝑡𝑡 − 1)𝑠𝑠+(𝑡𝑡 − 1)  (11) 

𝑝𝑝−(𝑡𝑡) = 𝑂𝑂(𝑡𝑡 − 1)𝑝𝑝+(𝑡𝑡 + 1)𝑂𝑂(𝑡𝑡 − 1)𝑇𝑇 + 𝑄𝑄(𝑡𝑡 − 1) (12) 

Correction step:  

𝑘𝑘(𝑡𝑡) = 𝑝𝑝−(𝑡𝑡)𝐻𝐻(𝑡𝑡)𝑇𝑇[𝐻𝐻(𝑡𝑡)𝑝𝑝−(𝑡𝑡)𝐻𝐻(𝑡𝑡)𝑇𝑇 + 𝑅𝑅(𝑡𝑡)]−1 (13) 

𝑠𝑠+(𝑡𝑡) = 𝑠𝑠−(𝑡𝑡)𝑘𝑘(𝑡𝑡)[𝑧𝑧(𝑡𝑡) −𝐻𝐻(𝑡𝑡)𝑠𝑠−(𝑡𝑡)]   (14) 

𝑝𝑝+(𝑡𝑡) = [1 − 𝑘𝑘(𝑡𝑡)𝐻𝐻(𝑡𝑡)]𝑝𝑝−(𝑡𝑡)  (15) 

The prediction-correction cycle is repeated. Looking at 
(13), the measurement error R(t) and Kalman gain k(t) are in 
inverse ratio. The smaller the R(t), the greater the weight for 
the gain k(t). In this case, the measurement is more trusted, 
while the predicted result is less trusted. However, as the a 
priori estimate error p-(t) approaches zero, the gain k(t) weights 
the residual less heavily. The actual measurement is trusted less 
and less, while the predicted result is trusted more and more. 

Optical flow and tracklet estimation is an important aspect 
of this framework. In this system the optical flow algorithm 
proposed in [12] and the tracking method presented in [19] 
were utilized but the system is designed in such a way that 
allows the incorporation of multiple motion estimation or 
tracking methods as plugins. Based on this system architecture 
the proposed evaluation framework is dynamic and capable of 
utilizing current and future state of the art tracking methods. 

3.2 Similarity Metric based on Motion and Tracklet Flux 
In order to evaluate the similarity level of the simulated and 

real scenes a new metric is required that will allow an objective 
comparison incorporating Human Visual System (HVS) based 
similarity features and metrics. According to Weber’s Law [20] 
and the work in [21, 22] motion perception is in accordance 
with Weber's Law when the signal-to-noise ratio is regarded as 
stimulus intensity. Therefore, the minimum motion contrast dV 

as a function of background motion V, required for the human 
visual system to notice a change is expressed as 

𝑑𝑑𝑑𝑑 = 𝑘𝑘 𝑑𝑑𝑑𝑑
𝑑𝑑

   (16) 

where dm is the differential change in motion perception, dV is 
the differential increase in the velocity, and V is the velocity. 
The parameter k is to be estimated using experimental data. 
The proposed measure includes Fechner’s Law, which relates 
velocity V, to perceived motion, m, as seen by the human visual 
system, as follows:  

𝑑𝑑 = 𝑘𝑘𝑘𝑘𝑘𝑘 � 𝑑𝑑
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

�  (17) 

where Vmax is the ‘upper threshold’ of the human eye. The 
proposed metric is based on the motion and tracklet flux 
histograms obtained from the perceived motion m utilizing 
standard computer vision algorithms.  

Let us assume that IR(u,t) and IS(u,t) are the image frames 
of a real and the correspondent simulated scene, respectively. 
The motion vectors for each pixel location in each frame are 
estimated using the above optical flow techniques, which are 
shown in (18) and (19) 

𝑀𝑀𝑅𝑅(𝒖𝒖, 𝑡𝑡) = ℱ(𝐼𝐼𝑅𝑅(𝐮𝐮, t), 𝐼𝐼𝑅𝑅(𝐮𝐮, t − 1))  (18) 

𝑀𝑀𝑆𝑆(𝒖𝒖, 𝑡𝑡) = ℱ(𝐼𝐼𝑆𝑆(𝐮𝐮, t), 𝐼𝐼𝑆𝑆(𝐮𝐮, t − 1))  (19) 

The estimated tracklets are obtained using motion 
information and Kalman filters. 

𝑇𝑇𝑅𝑅(𝑘𝑘𝑅𝑅,𝒖𝒖, 𝑡𝑡) = ℱ(𝑀𝑀𝑅𝑅 ,  𝐼𝐼𝑅𝑅)   (20) 

𝑇𝑇𝑆𝑆(𝑘𝑘𝑆𝑆,𝒖𝒖, 𝑡𝑡) = ℱ(𝑀𝑀𝑆𝑆,  𝐼𝐼𝑆𝑆)   (21) 

Since the motion vectors and the tracklets are available the 
histogram of oriented optical flow (HOOF) is calculated both 
for the real and simulated scenes. 

𝑓𝑓𝑅𝑅𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝐻𝐻𝑂𝑂𝑂𝑂𝐻𝐻(𝑀𝑀𝑅𝑅)    (22) 

𝑓𝑓𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝐻𝐻𝑂𝑂𝑂𝑂𝐻𝐻(𝑀𝑀𝑆𝑆)    (23) 

Also, a 2D histogram of the motion parameters is obtained 
using (24) and (25). 

𝑓𝑓𝑅𝑅𝐻𝐻2𝐷𝐷(𝑟𝑟𝑖𝑖𝑖𝑖) = 𝑑𝑑𝑖𝑖𝑖𝑖(𝑀𝑀𝑅𝑅)    (24) 

𝑓𝑓𝑆𝑆𝐻𝐻2𝐷𝐷(𝑟𝑟𝑖𝑖𝑖𝑖) = 𝑑𝑑𝑖𝑖𝑖𝑖(𝑀𝑀𝑆𝑆)    (25) 

Where rij is the ith and jth motion level in an interval [-G, +G] 
and mij is the number of pixels in all the given frames whose 
motion level is rij. 

Regarding the tracklets, the time parameter in (20) and (21) 
is removed by superimposing all of them at the same time 
instance. This is performed since the similarity metric is 
applied on a given time interval, that can be the whole 
sequence or a small time fragment. In the same way as in (24) 
and (25) we obtain:  

𝑓𝑓𝑅𝑅𝑇𝑇(𝑟𝑟𝑖𝑖𝑖𝑖) = 𝑑𝑑𝑖𝑖𝑖𝑖(𝑇𝑇𝑅𝑅)    (26) 

𝑓𝑓𝑆𝑆𝑇𝑇(𝑟𝑟𝑖𝑖𝑖𝑖) = 𝑑𝑑𝑖𝑖𝑖𝑖(𝑇𝑇𝑆𝑆)    (27) 

Finally, the flux of the features in (22-27) is represented by 
the surface integral of the given vector field.  



Φ(𝐮𝐮, t) = ∑ ∑ 𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝜕𝜕𝑢𝑢    (28) 

Based on (28), we obtain Φ𝑅𝑅
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,  Φ𝑆𝑆

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻, Φ𝑅𝑅
𝐻𝐻2𝐷𝐷, Φ𝑆𝑆

𝐻𝐻2𝐷𝐷,  
Φ𝑅𝑅
𝑇𝑇 and Φ𝑆𝑆

𝑇𝑇 that correspond to the proposed metrics. In order to 
measure the similarity and rank the algorithms a set of different 
distances can utilized e.g. Correlation, Bhattacharyya, Chi 
Square, Histogram Intersection, Dot Product, L1, Euclidean or 
earth mover's distance (EMD). All these metrics can be applied 
either on the whole sequence or on smaller blocks allowing 
speciotemporal adaptation of the proposed features and 
metrics.  

4. Experiments and Results 
In order to evaluate the proposed framework experiments were 
performed using two real scenes (see figure 4). Using the 
design tool, replicas of the scenes were developed utilizing 
basic primitives and textures from the original real frames. 
During the design process of the simulated 3D scenes metadata 
information regarding the relative camera location and 
orientation, the weather condition and the approximate time are 
manually specified. Also, all possible entrances and exits in 
these scenes are selected and alongside with all the metadata 
and the 3D scene will be provided to the simulation algorithm 
to populate the scene with pedestrians.  

  
Fig. 4. Real scenes that were utilized. one outdoors and one indoors. 

  
Fig. 5. The simulated scenes that correspond to the real ones designed 

using the proposed tool. 

TABLE I.  SPEARMAN'S RANK CORRELATION COEFFICIENT FOR BOTH 
SCENES USING BHATTACHARYYA DISTANCE FOR RANKING 
𝝆𝝆 Scene A Scene B 

Φ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 0.776223776 0.468531469 
Φ𝐻𝐻2𝐷𝐷 0.216783217 0.279720280 
Φ𝑇𝑇  0.174825175 0.321678322 

 

Regarding the simulation algorithm an approach based on 
[23] was considered and two parameters were selected to be 
adjustable in our experiments, the number of pedestrians and 
their average speed. Frame examples of the simulated 
sequences are shown in figure 5 and the length and the size of 
each sequence were equal to the corresponding real video. In 
our experiments three different levels of population and four 
levels of speed were considered, allowing an accurate 
evaluation of the proposed framework and the related novel 
metrics. The optical flow and the tracklets were estimated (see 
figures 6-7) for each scene and each case of the simulated case, 
resulting to 24 combinations in total. Thus, the HOOF features 
and the 2D histograms of 64×64 bins were calculated using the 
optical flow and equivalently the histograms of the tracklets 

based on the equations (22-28). Examples of the obtained 
features are shown in figure 8 indicating that they are 
appropriate for Human Visual System (HVS) based similarity 
features. 

   

  
Fig. 6. Examples color coded representations of the optical flow and the 

tracklets for the first real (left column) and simulated (right column) scene. 

 

 
 Fig. 7. Examples color coded representations of the optical flow and the 

tracklets for the second real (left column) and simulated (right column) scene. 

 

  
Fig. 8. The obtained features (left) local 2D histograms (right) HOOF. 

In order to evaluate the performance of the suggested 
metrics and features in terms of similarity based on HVS, 
subjective experiments were performed. The mean opinion 
score (MOS) was utilized to further evaluate the proposed 
metrics. For these experiments 10 humans were asked to 
observe all the simulated videos side by side with the original 
one and provide a similarity mark between 0 and 5 with higher 
values indicating higher similarity. Spearman's rank correlation 
coefficient ρ was used to obtain the similarity between the 
ranked scenes for each metric. The ranking in the case of the 
proposed metrics was based on Bhattacharyya distance. All the 
results are summarized in Figure 9 and Table I indicating that 



the proposed metrics and features are close to the HVS and 
especially the HOOF features. Also, from the results it can be 
observed the humans are more sensitive in motion differences 
than in the population size. This is shown in Tables II and III 
by calculating the standard deviation over each level of speed 
and population. It can be observed that the deviation is higher 
when the population is constant and the level of speed varies.  

 
Fig. 9. Bhattacharyya distance for all the combinations of speed and population. 

TABLE II.  STANDARD DEVIATION OF MOS AND HOOF FOR SCENE A 
 Speed Level  

Population 1 3 5 8 σ 
150 0.4000 0.8000 0.5500 0.4375 0.1803 
200 0.4625 0.925 0.6875 0.3500 0.2546 
250 0.3375 1.0000 0.7500 0.3625 0.3199 
σ 0.0625 0.1010 0.1023 0.0473  

TABLE III.  STANDARD DEVIATION OF MOS AND HOOF FOR SCENE B 
 Speed Level  

Population 1 3 5 8 σ 
150 0.2500 0.8875 0.5875 0.3625 0.2812 
200 0.3750 0.9625 0.7000 0.2875 0.3099 
250 0.4125 1.000 0.6250 0.2875 0.3119 
σ 0.0851 0.0572 0.0572 0.0433  

5. Conclusions 
In this paper a novel framework for evaluation of pedestrian 
and crowd simulation algorithm was proposed focusing on the 
realism in the behavior of the agents. The suggested evaluation 
approach is based on the idea of recreating real video scenes in 
3D environments and utilizing novel Human Visual System 
(HVS) based similarity features and metrics to estimate the 
correlation between the real and the simulated videos in terms 
of realism. Experiments were performed in real scenes showing 
that the proposed features and mainly the HVS-HOOF are well 
correlated with the MOS.  
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