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Abstract

In this paper, we present a simple yet effective approach
to recognizing human activities from video sequences. Our
approach integrates the advantages of human action recog-
nition in static images using action key poses and motion
based approaches using the variants of Motion History Im-
ages (MHI) and Motion Energy Images(MEI). We combine
both methodologies to extract a new representation of tem-
poral key poses. In an evaluation of this on well established
benchmark data we achieve high recognition rates. For the
task of action recognition using the MuHAVi data set, we
achieve an accuracy of 98.5% in a leave-one-out cross val-
idation procedure. For single-view action recognition using
the popular Weizmann data sets, we achieve an accuracy of
100%. In more difficult evaluation setups where the num-
ber of training samples for certain individuals or views are
restricted, the proposed method exceeds recently published
results of other approaches. Moreover, the introduced ap-
proach is computationally efficient, robust with respect to
parameter selection, and straight forward to implement as
it builds on well established and understood concepts.

1. Introduction
Automatic recognition of human actions is an important

and active field in computer vision; it aims at automatically
identifying human actions in images or videos. That is, it at-
tempts identifying whether a person is walking, jumping, or
performing other types of actions. There are many tangible
applications of activity recognition, ranging from domains
such as surveillance, video annotation, or gesture recogni-
tion to sports video interpretation.

Among the many different approaches to action recog-
nition, two general trends are to consider static, pose-
based cues or dynamic, motion-based information. For the
pose-based methods, often a sequence of certain expressive
poses, so called key poses or pose primitives, is extracted
at a frame level. These methods are limited by the dis-
criminative power of the extracted key poses, specifically,
for classes where the inter-class variations is smaller than

Punching Kicking Running Standing up

Jack Bend Wave Pjump

Figure 1. Exemplary silhouettes from the MuHAVi data set (first
row) and the Weizmann data set (second row).

the intra-class variation, such as the identification of, e.g.
walking or running. Moreover, these methods can be neg-
atively affected by sudden shape deformations due to noise
or occlusions (Figure 1) or the absence of a clearly struc-
tured human pose (Figure 2). For the temporal methods,
many authors consider simple motion features which are ex-
tracted from a complete sequence or subsequences thereof.
Interestingly, a direct combination of static pose features
and motion feature on frame level has been rarely applied
so far [12, 8].

[12] presents an implementation of a biologically in-
spired system that combines shape- as well as motion-based
representations. Shape represent silhouettes and motion is
characterized by the optic flow between successive frames.
They empirically prove that the combination of both fea-
tures outperforms corresponding single cue activity recog-
nition. Following this work, [8] derives a pose descriptor for
each frame of a video. It captures both motion (from optical
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Figure 2. Selected frames showing a person in action. Despite the
absence of a clearly visible human pose, people still can recognize
the activity as somebody sitting down [2].

flow) and pose information (from image gradients). Using
clustering, a codebook of visual poses is created and used
for later recognition steps. Tested against various bench-
mark data, this setup achieves competitive results.

Given the known merits of temporal templates of Motion
History Images (MHI) and Motion Energy Images (MEI)
[2, 5] and the benefits of combining motion and pose infor-
mation [12], we here propose to apply MHIs, which repre-
sent significant motion cues, in combination with represen-
tations of static body poses to discriminate different actions.
This representation thus integrates well established methods
in a new way that alleviates their individual shortcomings.

For the results discussed in this paper, we assume a
working background subtraction to be given such that sil-
houette images are available for further processing. We
first localize the human silhouette within a window cen-
tered around the center of mass of the shape pixels. Instead
of considering one temporal template (MHI) for the whole
image sequence, we use a temporal pose template for each
body pose at each frame of the action sequence. Next, we
perform clustering using k-means which results with a set
of temporal key poses. For recognition, a nearest neigh-
bor procedure is applied to determine a class label for each
temporal pose template of the query video. Finally, a ma-
jority voting scheme is used to determine a class label for
the whole image sequence.

In the reminder of this paper, we first discuss related
work and then review the idea of temporal templates of
MHIs and MEIs. Section 4 presents the data sets used in
the evaluation procedure. In section 5, we present our ex-
perimental evaluation. Finally we present our conclusions
in section 6.

2. Related Work

Automatic event detection from video has been stud-
ied extensively in recent years [10, 19]. Roughly, one can
categorize proposed algorithms into three different strate-

gies based on the nature of the features used for classifica-
tion: dynamic features (i.e motion cues), static features (i.e.
shape cues), or implicit or explicit combinations of both.
Most recent approaches rely on identifying dynamic fea-
tures using motion cues. Early attempts to solve the prob-
lem of human action recognition used tracked body parts as
input features [11, 20]. However, practically feasible rep-
resentations were impeded by the challenging problem of
tracking human body parts, especially in monocular videos.

Interest points methods which are popular in object de-
tection have also found their way to action recognition. [9]
presented a hierarchical model which applied a collection of
spatial and spatiotemporal features extracted from interest
points. [6] extended spatial interest points to 3D space-time
interest points in order to extract structures that have signif-
icant local variation in both space and time. The resulting
representations are then applied to human action recogni-
tion using Support Vector Machines.

Methods which depend only on static features have
evolved recently, most likely due to generalization capa-
bility of this idea which applied to both still images and
videos. [15] represents activities as a temporal sequence of
key poses. These key poses result from clustering the train-
ing data and considering the resulting cluster centroids as
discriminative elements. [4] models human poses in videos
using the Histogram of Oriented Rectangles (HOR) descrip-
tor which describes a pose as a set of oriented rectangles that
cover the human body. These methods are yet limited by the
discriminative power of those static features, specially, for
actions which share strong relations between their poses.

Methods which implicitly combine motion and appear-
ance information date back to the analysis of spatiotem-
poral templates [2]. Typically, MEI and MHI are used as
temporal templates to recognize human actions. For recog-
nition, [2] uses seven Hu moments. [18] proposed a 3D
extension of temporal templates. The idea is to use multi-
ple cameras in order to build motion history volumes and to
classify actions using Fourier analysis in cylindrical coordi-
nates. [3] proposes a temporal-state shape context (TSSC)
method that organizes silhouettes of objects in a video into
three temporal states. The objective is then to capture local
characteristics of the space-time shape induced by consecu-
tive changes of silhouettes. These approaches rely majorly
on modeling the action sequence as a whole instead on short
action snippets [12], which may limit any temporal segmen-
tation procedure if the person’s behavior changes from one
action to another along the sequence.

[8] proposes a pose descriptor capable of capturing both
motion (from optical flow) and pose information (from im-
age gradients). Afterwards a clustering scheme is utilized
to extract a codebook of visual poses for recognition. The
success of combined features was made popular by [12].
The approach combines static form and dynamic motion



features on a frame level. For form, [12] extracts local edges
and for motion, the optic flow computed between consecu-
tive frames t − 1 and t is regarded. Both features are sepa-
rately compared to previously learned templates. This com-
bination of both features led to an important observation,
which identifies the required number of frames required to
recognize an action.

In contrast to prior work with temporal templates, [5]
models the image sequence of an action as a sequence of
temporal templates instead of one for the whole action. Af-
terwards, a local binary pattern (LBP) texture descriptor
is used to capture the essential information of the human
movements. This approach operates on both image data
and silhouette image sequences, and presents competitive
results on benchmark datasets. Recently, [16] proposed a
simple yet effective approach that aims at encoding human
actions using the quantized vocabulary of averaged silhou-
ettes. These silhouettes are derived from space-time over-
lapping window shapes and implicitly capture local tem-
poral motion as well as global body shape. However, this
approach may have a limited applicability toward discrimi-
nating actions which involve similar poses in reverse order
( e.g. stand up and sit down) since it does not give enough
evidence of the chronicle order of the human poses within
the selected window.

3. Action Modeling
In work reported here, we model human actions as se-

quences of temporal templates. We represent each body
pose within a sequence by its actual time context. This is
performed by transforming each pose to a temporal repre-
sentation using Motion History Image (MHI) as proposed
by [2]. Intuitively, this representation is able to characterize
motion and can also reference the underlying static pose of
the body [2, 5]. Figure 3 illustrates examples of correspond-
ing temporal pose representations of selected frames of a
walking action. The major benefit of transforming static
human poses into temporal description is to alleviate the
intra-class variation within the same action and to enlarge
the inter-class variation between different actions by relat-
ing the pose to its chronicle order. In the following, we
describe the construction used to extract the temporal pose
templates as well as the classification approach used for ac-
tion recognition.

3.1. MEI and MHI Templates

[2] introduced Motion Energy Images (MEI) and Mo-
tion History Images (MHI). These representations decom-
pose motion recognition by describing where object motion
is observable (MEI) and how an object is moving (MHI).

An MEI E is a binary construct which identifies where
motion occurred in an image sequence (computed from the
first to the final frame). In particular, it describes the spatial
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Figure 3. Frames from the walking action in the MuHavi data (first
row) and their temporal pose version using MHI (second row).

distribution of motion and is defined as:

Eτ (x, y, t) =

τ−1⋃
i=0

D(x, y, t− i) (1)

where the D(x, y, t) are successive differences between
video frames, i.e

D(x, y, t) =| I(x, y, t)− I(x, y, t− 1) | (2)

where, I(x, y, t) refers to a (binary) silhouette image with
coordinate (x, y) at time t.

On the other hand, an MHI H captures the spatial and
temporal information of motion in images, encoding how
recent changes have occurred. If motion is present at time
t, i.e D(x, y, t) = 1, then each pixel motion of the MHI is
a function of the history of motion at that point, occurring
within a fixed duration τ :

Ht(x, y) =

{
τ if D(x, y, t) = 1
max(0, Ht−1(x, y)− δ) otherwise

(3)
Here (x, y) and t denote position and time, while D signals
an object’s presence in the current video image. The dura-
tion τ denotes the temporal extent of a motion and δ repre-
sents a decay parameter. For simplicity, we set δ = 1. In
the resulting grey-value image, more recently moving pix-
els appear brighter than older ones [2].

Grey-value MHIs are able to distinguish between mir-
ror symmetric actions (e.g. ”walk left” vs. ”walk right”). In



Figure 4. General overview of our approach. First human silhouettes are extracted, resized, and centered around their center of mass.
Afterwards, temporal pose templates are extracted using MHIs and clustered separately for each action. Cluster centroids (temporal key
poses) are then used to classify temporal poses of novel image sequences using a nearest neighbor scheme. A majority voting over the
resulting per frame labels of query sequence decides the final class label of the sequence.

addition, MHI templates are insensitive to silhouette noise
such as holes, shadows, or missing parts. They can be com-
puter from cheap cameras and on less powerful CPUs and
work well where structure cannot be easily detected [1].

MHIs are known to be sensitive against changes in scale,
location, and view point. We eliminate scale and location
dependencies by centering each MHI with respect to the
center of mass of the human silhouette [14]. Another known
shortcoming of drawback of MHIs occurs when they are
used to represent an action as a whole. Therefore, setting
the duration parameter τ is critical, since the duration of
different actions varies (e.g. kicking and running), as do dif-
ferent instances of the same action. In our implementation,
we address this by using a temporal template for each frame
instead of using one for a whole video sequence.

3.2. Classification

Our classification approach applies a simple and efficient
yet effective nearest-neighbor classifier. In order to train it
from raw image sequences, the extracted human silhouettes
are resized to a common size and centered around their cen-
ter of mass. Afterwards we extract for each pose in a activ-
ity video its MHI template. This results with a large number
of templates, most of which contain redundant and insub-
stantial information. To focus on the most discriminative
templates of each action, we resort to k-means clustering
on the training data of each action separately. We refer to
the resulting cluster centroids as temporal key poses. In the
recognition phase, given novel sequences, we first generate
their temporal poses templates and assign them to the class
of the nearest template key pose previously learned. The fi-

nal decision of the action class results from a majority vote
over all pose templates classes of the query video.

4. Data Sets

Our evaluation experiments were performed on two
benchmark data sets, namely, the Weizmann data set, and
the MuHAVi data set. For the Weizmann data set, we con-
sider the silhouette images of the aligned version for the hu-
man action images. These silhouettes contain ”leaks” and
intrusions” due to shadows and imperfect subtraction with
the background. The silhouette masks provided consist of
93 samples of 9 different people, each performing 10 natu-
ral actions such as ”run”, ”walk”, ”skip”, ”wave”, ”jump”,
”bend”, etc. All actions were recorded from the same view-
point in a controlled environment.

The Multiple-view Human Action Video data set
(MuHAVi) data set has recently raised the bar for the chal-
lenge of human action recognition. It provides multi-view
data of actions of different actors with CCTV-like views (at
an angle and some distance from the observed person). Ac-
tion videos in this data set were taken from multiple view
points performed by multiple actors. The data consists of
136 samples of 14 primitive actions performed by 2 actors
observed from 2 different views. The actions in the data set
can be reorganized into 8 classes where similar actions now
constitute a single class. In [13], the authors have set the
baseline accuracies for three challenging evaluations. The
first is to perform a leave one out evaluation on the whole
data set; the second considers identical camera views for
training and testing, yet testing happens with videos of ac-
tors not contained in the training data. The final evaluation



Table 1. Accuracy(%) Leave one out, 8 actions

aaaaaaaaaaaaaaaaa Accuracies

Action class [13] Our [7]

Collapse 16/16 16/16 16/16
Run 15/16 16/16 15/16
Standup 12/12 12/12 12/12
TurnBack 11/12 12/12 12/12
Walk 16/16 15/16 16/16
Guard 32/32 32/32 30/32
Kick Right 15/16 15/16 16/16
Punch Right 16/16 16/16 16/16

Average Accuracies 97.8 % 98.5% 97.8%

Figure 5. Confusion matrix for leave-one-out cross evaluation on
8 actions from the MuHavi data set (average accuracy 98.5% with
2 samples out of 136 misclassified).

setup tests identical training and test actors against videos
recorded from novel camera views.

5. Experiments

We perform an extensive evaluation of our proposed ap-
proach on each of the above mentioned data sets. In case
of the MuHAVi data set, we perform the suggested 3 tests:
leave-one-out evaluation on the whole data set, novel actor
evaluation, and novel camera viewpoint evaluation. We also
perform further evaluations on the Weizmann data set, in or-
der to insure the validity of our algorithm, and compare it
to known state-of-the-art results.

5.1. MuHAVi Leave-one-out Cross Evaluation

For the first setup, we consider the MuHAVi data set
composed of 8 different actions. We perform a leave-one-
out cross-validation. We achieve an accuracy rate of 98.5%,
i.e. only 2 out of 136 samples were misclassified. Table 1
illustrates the individual accuracy rates obtained for the 8
actions. Note that, in the corresponding confusion matrix
in Figure 5, confusion occurs between the ”guard-to-kick”
and ”guard-to-punch” actions which we attribute to the high
visual similarity of these actions.

Table 2. Accuracy(%) Leave one out, 14 actions

aaaaaaaaaaaaaaaaa Accuracies

Action class [13] Our

Collapse Left 4/8 6/8
Collapse Right 5/8 7/8
Run Left To Right 7/8 8/8
Run Right To Left 7/8 8/8
Stand up Right 8/8 8/8
Turn Back Right 7/8 8/8
Walk Left To Right 8/8 8/8
Walk Right To Left 8/8 8/8
Guard To Kick 13/16 12/16
Guard To Punch 10/16 14/16
Kick Right 15/16 16/16
Punch Right 16/16 16/16
Turn Back Left 4/4 2/4
Stand up Left 0/4 4/4

Average Accuracies 82.4% 91.9%

Next we perform similar evaluation on the MuHAVi data
using a leave-one-out cross-validation setup, but this time
consider 14 different primitive actions. Table 2 shows
the resulting accuracies. Similar to the setup with 8 ac-
tion classes, we achieve an accuracy rate of 91.9%, i.e 11
samples out of 136 are misclassified. Figure 6 provides the
corresponding confusion matrix.

5.2. Identical Cameras, Novel Actors

In this setup, we split the data set into 2 parts each con-
taining 68 samples. Each part refers to actions performed
by the same actor. For classification, we train with one ac-
tor actions and test it against another. In an 8 action setup,
we achieved an accuracy rate of 85.3%. Table 3 illustrates
the accuracy rates achieved for each class.

Apparently, our approach outperforms the baseline
method with 10 misclassified samples compared to 16 in
[13]. See Figure 7 for the confusion matrix.

Again, we perform similar actor-to-actor evaluation for
the data set consisting of 14 primitives actions. In this
test, too, accuracies outperform the baseline approach [13]
reaching a rate of 77.9% The number of misclassified sam-
ples was found to be 15. Table 4 illustrates summarizes the
results; Figure 8 provides the confusion matrix.

5.3. Identical Actors, Novel Camera

We perform this test to verify the performance of our
algorithm on various views of human actions. For this pur-
pose, we group the data into two parts, each containing 68
samples of the actions performed by one actor from one
view. We train our classifier on one view and test against



Figure 6. Confusion matrix for leave-one-out cross evaluation on
14 actions from the MuHavi data set (average accuracy 91.9%
with 11 samples out of 136 misclassified).

Table 3. Accuracy(%) Novel actors, 8 actions

aaaaaaaaaaaaaaaaa Accuracies

Action class [13] Our

Collapse 6/8 3/8
Run 7/8 8/8
Standup 5/6 6/6
TurnBack 3/6 5/6
Walk 8/8 7/8
Guard 8/16 13/16
Kick Right 7/8 8/8
Punch Right 8/8 8/8

Average Accuracies 76.4 % 85.3%

Figure 7. Confusion matrix for novel actor evaluation, 8 actions

another. For the 8 actions setup, we achieved an accuracy
rate of 55.8%, i.e 30 samples out of 68 are being misclas-
sified (Table 5). This result is anticipated because of the
viewpoint sensitivity of the MHI as pointed out by [2]; Fig-
ure 9 provides the confusion matrix.

For the 14 actions setup, we achieved a lower accuracy
rate of 38.2% with 42 misclassified samples out of 68 (Ta-
ble 6). This is a reasonable result when considering 14
actions, since we can attribute it to the MHI representa-

Table 4. Accuracy(%) Novel actors, 14 actions

aaaaaaaaaaaaaaaaa Accuracies

Action class [13] Our

Collapse Left 3/4 2/4
Collapse Right 2/4 1/4
Run Left To Right 3/4 4/4
Run Right To Left 4/4 4/4
Stand up Right 4/4 4/4
Turn Back Right 2/4 4/4
Walk Left To Right 4/4 4/4
Walk Right To Left 4/4 3/4
Guard To Kick 0/8 2/8
Guard To Punch 0/8 7/8
Kick Right 0/8 8/8
Punch Right 7/8 7/8
Turn Back Left 1/2 1/2
Stand up Left 0/2 2/2

Average Accuracies 61.8% 77.9%

Figure 8. Confusion matrix for novel actor evaluation, 14 actions

Figure 9. Confusion matrix for novel camera evaluation 8 actions

tion eliminating mirror symmetries. For instance, actions
such as ”walk left” recorded by a camera 3 would appear
as ”walk right” from the point of view of another camera.
Artifacts like these require special attention in multi-view



Table 5. Accuracy(%) Novel camera view, 8 actions

aaaaaaaaaaaaaaaaa Accurices

Action class [13] Our

Collapse 5/8 5/8
Run 7/8 8/8
Standup 5/6 6/6
Walk 6/8 6/8
TurnBack 5/6 5/6
Guard 3/16 3/16
Kick Right 7/8 8/8
Punch Right 6/8 0/8

Average AccuracyAccrues 50 % 55.8%

Table 6. Accuracy(%) Novel camera view, 14 actions

aaaaaaaaaaaaaaaaa Accuracies

Action class [13] Our

Collapse Left 0/4 0/4
Collapse Right 2/4 0/4
Run Left To Right 0/4 3/4
Run Right To Left 0/4 4/4
Stand up Right 4/4 2/4
Stand up Left 2/4 0/2
Walk Left To Right 3/4 4/4
Walk Right To Left 0/4 3/4
Turn Back Right 3/4 2/4
Turn Back Left 2/2 0/2
Guard To Kick 0/8 0/8
Guard To Punch 2/8 0/8
Kick Right 7/8 8/8
Punch Right 6/8 0/8

Average Accuracies 42.6% 38.2%

action recognition and will be addressed in future work.

5.4. Evaluation on the Weizmann Data

We also evaluated our approach on the Weizmann data
set and considered the 10 contained actions in a leave-one-
out cross evaluation. In particular, we experimented with
temporal pose templates using MHI where we varied the
duration parameter values τ = [2, 3, 5, 7]. This resulted in a
100% classification accuracy for τ = 7. Table 7 compares
the results obtained from our approach to established state-
of-the-art approaches.

This result conveys a message similar to what is reported
in by [12] which found that 1–7 frames are sufficient for
basic action recognition. In our case, we found that setting
the duration history to τ ≥ 5 in constructing MHI temporal
templates provides reliable recognition rates in classifying

human action.

Table 7. Weizmann data set
aaaaaaaaaaaaaaaaa Accuracies

Approach Input Seq Result (%)

Snippet 1 [12] Image data 83 93.5%
Snippet 10 [12] - - 99.6%
Snippet all seq. [12] - - 100%
[5] Silhouette 90 98.9%
[17] Silhouette 90 97.8%
[4] Silhouette 81 100%
[16] Silhouette 93 96.8%

our approach Silhouette 93
(MHI)τ=2 - - 50.5%
(MHI)τ=3 - - 86.8 %
(MHI)τ=5 - - 98.9%
(MHI)τ=7 - - 100%

6. Conclusion

In this paper, we reported an extensive evaluation of an
approach to human action recognition that models activity
sequence by means of groups of temporal templates. In or-
der to extract meaningful and discriminative temporal pose
templates for different actions, we perform k-means clus-
tering on pose templates and extract key pose templates
for subsequent classification. Our approach is conceptu-
ally simple, computationally efficient to implement either
in on-line or off-line settings, and robust against variations
due to reasonable perspective variations, different actions,
and different actors. The proposed approach using Motion
History Images (MHIs) was found to perform favorably in
comparison to a number of recently proposed state-of-the-
art methods. However it inherits a known shortcoming of
MHIs which limits its recognition rate in case of severely
changing camera views.
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