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Abstract

This paper proposes a novel approach to pose-based hu-
man action recognition. Given a set of training images,
we first extract a scale invariant contour-based pose fea-
ture from silhouettes. Then, we cluster the features in order
to build a set of prototypical key poses. Based on their rel-
ative discriminative power for action recognition, we learn
weights that favor distinctive key poses. Finally, classifica-
tion of a novel action sequence is based on a simple and
efficient weighted voting scheme that augments results with
a confidence value which indicates recognition uncertainty.
Our approach does not require temporal information and
is applicable for action recognition from videos or still im-
ages. It is efficient and delivers real-time performance. In
experimental evaluations for single-view action recognition
and the multi-view MuHAVi data set, it shows high recogni-
tion accuracy.

1. Introduction
Human activity recognition from videos and still images

is an important and active research area in computer vision.
It serves a wide range of applications, e.g., video surveil-
lance, content based image retrieval, human-computer inter-
action, entertainment, etc. Often, human activities are cat-
egorized according to their duration or complexity. For ex-
ample, there are gestures such as “smile” or “rotate head” or
(primitive) actions such as “walk” or “turn back”, as well as
(complex) activities such as “cooking” or “playing cricket”.
In this paper, we focus on primitive actions that, when prop-
erly combined or sequenced (or put into context), could be
used to explain more complex activities. In particular, we
aim at recognizing actions that can be discriminated based
on their pose.

Most existing work on action recognition relies on tem-
poral cues. Many methods directly use motion features
[9, 7] or spatio-temporal features [5, 4, 16, 10]. Other meth-
ods track local patches or interest points [12, 14] or use
probabilistic models (e.g. n-grams or HMMs) to implicitly

represent temporal contexts [19, 13, 20].
While motion information obviously plays an important

role in action recognition, many human activities such as
“running”, “reading a book”, “standing”, or “playing foot-
ball”, can be recognized from only a single image or snap-
shot, assuming that the given pose is sufficiently distinctive
or that enough context information is provided. Interest-
ingly, only a few approaches have been introduced so far
that work equally well for action recognition from videos
and still images. A common idea of these approaches is
to represent and classify human poses for each image or
frame in a sequence [8, 21, 3, 19]. Common pose represen-
tations include silhouettes [21], line-pairs [3], histogram of
oriented gradient (HoG) descriptors [18], or contour-HoG
descriptors [8]. An action class is then usually represented
as a histogram over a set of key poses, i.e. a representa-
tive pose of a complex action, or simply as concatenation of
pose representations.

In this paper, we propose a novel non-temporal method
for action recognition from videos and still images. In con-
trast to previous work, we apply a scale invariant contour
feature for pose representation that can be efficiently com-
puted from a silhouette image. For the representation of
action classes, we make use of the idea of key poses. How-
ever, in addition to previous work, we rate the most dis-
criminative key poses. For instance, key poses involved in
a “turn back” action will include poses representing states
of “standing”, “walking”, “turning-head”, among others.
Since key poses such as “standing” may be shared among
different actions (e.g. “guard”, “walk”, etc.), we apply sta-
tistical learning to determine the relative importance of key
poses. Additionally, the relative importance weights allow
us to assign confidence values to classification results. As
we do not use any temporal information, our model is suit-
able both for video and image based action recognition. By
benchmarking on single- as well as on multi-view activity
data sets, we demonstrate that our approach successfully
deals with variations in view or distance.

The technical contribution of this work is twofold: (i)
a novel combination of a contour-based pose representa-



tion and non-temporal key pose identification, (ii) a novel
weighting scheme for rating the relative importance of key
poses. Also, unlike various other approaches [21, 1], we
do not require any subsampling, upsampling or trimming
during training. We have no limitations with respect to
the length of the considered video sequence, and the ap-
proach performs in real-time on any standard desktop com-
puter or smartphone. This real time capability is of cru-
cial importance in our intended application which aims at
smartphone implementations of pose-based recognition of
actions in massive image databases.

The reminder of the paper is organized as follows: Sec-
tion 2 reviews related work. Section 3 provides details on
the underlying contour-based feature. Details on the leading
of discriminative key poses are given in Section 4. Section
5 reports details on our benchmark data, experiments, and
results. Finally, Section 6 concludes the paper.

2. Related Work
The idea of using key poses for activity recognition has

been applied frequently in previous work. Carlsson and Sul-
livan [6] used key-frame templates for action recognition.
They recognized forehand and backhand tennis strokes in
videos by computing an edge-based distance metric be-
tween candidate frames and manually chosen key-frames.
Recently, Kilner et al. [11] used key poses to analyze 3D
data in a multi-camera sports environment. However, their
approach is not applicable if only one view is considered at
a time. Thurau et al. [19] introduced a weighting scheme
for histograms of key poses based on mutual information.
In contrast to their work, we directly modify the weight-
ing of each key pose and use a different weighting scheme.
Weinland and Boyer [21] presents an exemplar-based em-
bedding approach which does not use any motion informa-
tion. Employing forward feature selection, they determine
key-frames. The training data is then mapped to a distance
space based on key frames. However, this is computation-
ally demanding, especially when applied without subsam-
pling on large, multi-view and multi-actor data sets. Our
approach differs in two aspects. First, we use cluster cen-
ters as the representative key poses for each action class.
Secondly, we model the inter-class variation by efficiently
learning weights for key poses.

Our approach is most similar to recent work by Baysal et
al. [3] that finds discriminative key poses using k-mediods
and a ranking scheme over their potential score towards dis-
criminating actions. We, on the other hand, propose the use
of an intuitive, weighted voting scheme for classification.
Also we propose to use a contour-based feature which is
more informative and systematic than the manually marked
line-pair edge segments considered in [3]. Our feature ex-
traction is based on work by Dedeoglu et al. [8] who define
a distance signal over object contours. For action repre-

Figure 1. Contour-based feature extraction

sentation, they use template histograms of key poses in a
temporal context. We, on the other hand, avoid histograms
or any other temporal model. This allows our action recog-
nition approach to be applicable for both image- and video
data sets.

3. Contour-based Pose Representation
Extraction of informative feature is crucial for success of

human activity recognition. Binary silhouettes (or contours)
are extensively employed to represent human actions [15,
13, 6, 20, 21]. Since the focus of this paper is on learning
discriminative key poses, we assume silhouettes images to
be available, which is indeed the case for many well-known
benchmark data sets. Given a human silhouette, we extract
its contour and transform it into a distance space as in [8].
Next, we describe details of this representation.

Let H be the binary silhouette image of an object. We
determine its center of mass C = (xc, yc) where

xc =

∑n
i=1xi

n
, yc =

∑n
i=1yi
n

(1)

and n is the number of silhouette pixels.
Let P = [p1, p2, ..., pn] be the ordered set of contour

points such that p1 corresponds to the horizontal-left of C
(see Fig. 1) and successive pi are listed in a clockwise fash-
ion. A distance vector d = [d1, d2, ..., dn] is formed by
calculating the Euclidean distance between pi and C, i.e.

di = ∥pi − C∥ , ∀i ∈ [1, 2, ..., n] (2)

In order to provide a uniform representation for varying
image sizes and shapes, d is scaled to a constant size s such
that

D̂ [i] = d

⌈
i ∗ n
s

⌉
, ∀i ∈ [1, 2, ..., s] (3)

where ⌈⋅⌉ is the ceiling function.
Finally, the scaled distance vector D̂ is normalized to

have unit sum:

D [i] =
D̂ [i]∑s
1 D̂ [i]

(4)



Figure 2. Overview of our approach

This contour-based feature is scale-invariant and can be
efficiently extracted from silhouettes. Compared to the
size of the original image, the size of the contour is much
smaller. For example, in the MuHAVi data set, the reso-
lution of the original silhouette images is 720 × 576 pixels
whereas the contours of the silhouettes consist of only a few
hundred pixels. The contour can be further scaled down
if s < n. This implicit dimensionality reduction through
transforming the silhouette to a distance signal ultimately
enables efficient learning and classification.

4. Learning Discriminative Key Poses

Our approach to key pose extraction builds on [3] where
key poses are learned over a space of line-pair segments. A
significant feature of our approach is its ability to adapt to
and to exploit the importance of key poses. Figure 2 sum-
marizes the computational steps.

Given a set of labeled video sequences or still images,
silhouettes can be extracted for all frames through back-
ground subtraction method which can be done reliably in
many domains. For several benchmark data sets, including
those considered in this paper, binary silhouettes are readily
available which permits us to focus on the problem of action
recognition. Given an extracted silhouette, each input frame
is mapped to a normalized distance signal D of size s. By

Algorithm 1 Learning discriminative key poses
Input: Silhouettes for all input frames of all videos
Output: Key poses and their weights
Let k represents the number of clusters,
A = {a1, a2, ...ar} be the set of actions,
pij denotes j − tℎ key pose of action i and wij be the its
weight

1: for all action a ∈ A do
2: Cluster all frames into k groups using k-means
3: Take cluster centers as key poses thus ending up with

r × k key poses
4: end for
5: for all actions a ∈ A do
6: for all frames f ∈ a do
7: Assign the key pose pij to f such that ∥f − pij∥

is minimum
8: end for
9: end for

10: Let nij and n
′

ij respectively denotes number of within-
class assignments and number of out-of-class assign-
ments to pij

11: wij :=
nij

nij + n
′
ij

∀i, j

choosing s as a free parameter of the distance transform, the
granularity of the resulting feature may be controlled.

In order to determine activity specific key poses from the
available training data, we consider two successive steps. In
the first stage, key poses are determined for each action by
clustering all frames belonging to the corresponding class.
In the second stage, weights are assigned to these key poses
according to their ability to discriminate among different
actions in the training data. Algorithm 1 summarizes the
procedure.

Lines 1 – 4 corresponds to key pose extraction. We ap-
ply k −means clustering with Euclidean distances to cal-
culate key poses for each action. Since our model is strictly
non-temporal, we do not create any histogram or ordering
of key poses (KPs). Thus, key poses represent a set of dif-
ferent possible states of a primitive action. For example,
key poses for the action “kick” may correspond to spatial
states such as “standing”, “arm adjustment”, or “pulling the
leg”. Figure 3 shows an example of 8 key poses extracted
from a video of the action KickRight in the MuHAVi data
set. Notice that KP-2 and KP-6 through KP-8 do not seem
to present distinctive states of the action. Instead, they look
more related to actions such as “walk”, “guard”, or ”punch”.
Yet they are automatically extracted since they apparently
represent significant parts of the action sequence.

The issue of shared or ambiguous key poses is resolved
by adopting a simple and intuitive mechanism of assign-
ing rewards and penalties to key poses (Lines 5 – 11 of Al-



KP-1 KP-2 KP-3 KP-4

KP-5 KP-6 KP-7 KP-8

Figure 3. Different key poses for action KickRight in MuHAVi
data set

gorithm 1). This procedure computes relative importance
weights of key poses for different actions. By iterating over
all actions, the closest key pose pij for each frame is de-
termined. For each key pose pij , two values are nij and
n

′

ij are stored where the former denotes number of correct
classifications to the key pose and latter denotes number of
false assignments to the key pose. In this way those key
poses which frequently matches to the frames from other
classes, will have lower weights. On the other hand, key
poses which appear only within one class will get higher
weights.

From the perspective of key poses: if a key pose corre-
sponds to frames from different action classes, it will have
some false assignments which would decrease its weight.
From the perspective of action classes: key poses which are
common only within the action class and are discriminative
with respect to other action classes will have higher weights.
This mechanism also allows for automatically eliminating
effects of overlapping actions. For instance, KickRight and
GuardToKick in the MuHAVi data sets are two such ac-
tions for they share many common states such as ”stand-
ing straight” or ”standing in a punching position”. Figure 4
shows the 8 top ranking key poses and their weights as de-
termined by our approach. Notice that (a) the larger weights
are assigned to more discriminative key poses (b) the poses
corresponding to overlapping states(such as ”standing in
punching position” depicted by 7th key pose of KickRight
and 2nd key pose of GuardToKick) have very different im-
portance for the two actions. This indicates the ability of
our approach to learn the relative importance of key poses.

In the application phase, in order to classify a given
frame sequence, we first extract its contour feature. Then
we determine the classes and the weights of the closest key

poses for each query frame. Based on these weights, we
apply a simple weighted voting scheme. Weights are accu-
mulated for all related key poses and the label of the action
class which has highest sum of weights is chosen. Notice
that more discriminative poses dominate this process. In
contrast to approaches such as [19, 3], this allows all query
frames and all key poses to participate in the classification
process. Due to a compact and non-temporal feature rep-
resentation and a moderate number of key poses, we thus
achieve real-time classification.

5. Experiments
To evaluate the effectiveness and robustness of our ap-

proach, we performed experiments on two well known data
sets, namely the Weizmann collection [4] and the MuHAVi
set [17]. In comparison to single-view Weizmann data,
MuHAVi is a versatile multi-view action data set with more
primitive action classes. All experiments presented in this
section were carried out on a standard notebook computer
using MATLAB 7. The Average processing rate was mea-
sured to be 56 frames per second, indicating real-time ap-
plicability of the approach. In the following, we elaborate
on the two data sets and our experimental results.

5.1. MuHAVi Data set

MuHAVi is a multi-camera and multi-action data set. It
consists of videos of 17 activities performed multiple times
by 14 actors. The action sequences are captured by 8 dif-
ferent CCTV cameras each with an angular difference of
45∘. Silhouettes of 14 primitive actions performed by 2
actors (A1 and A4) captured from 2 views (45∘ and 90∘)
were manually annotated and made publicly available. This
data set (also known as MuHAVi-MAS) provides 136 anno-
tated silhouette sequences. In the following, we refer to this
data as MuHAVi-14. The contained primitive actions can be
further grouped into 8 action classes. For example, “Walk-
LeftToRight” and “WalkRightToLeft” may be merged into
“Walk”. We refer to this merged data set as MuHAVi-8.

In order to validate our approach w.r.t. the multi-view,
multi-actor nature of the data set, we performed different
experiments which are described next.

5.1.1 Leave-one-out Cross Validation

In this test, we iteratively trained the classifier on all in-
stances except one and tested it on the left-out instance.
Finally, the average accuracy was calculated over all 136
silhouettes. By using k = 60, we achieved an accuracy of
up to 86.03% and 95.58% for MuHAVi-14 and MuHAVi-8,
respectively. See Figures 5 and 6 for the resulting confusion
matrices.

Notice that our approach is able to distinguish between
actions involving similar poses in different temporal or-



w1 = 1.0 w2 = 1.0 w3 = 1.0 w4 = 0.84 w5 = 0.74 w6 = 0.67 w7 = 0.14 w8 = 0.08

w1 = 0.83 w2 = 0.80 w3 = 0.69 w4 = 0.52 w5 = 0.43 w6 = 0.28 w7 = 0.20 w8 = 0.16

Figure 4. The 8 high-ranking key poses and their weights for each of the two overlapping actions KickRight(first-row) and GuardTo-
Kick(second-row) in the MuHAVi data set. The most distinctive and representative key-poses have higher weights. Key poses correspond-
ing to overlapping states have different relative importance e.g. w7 of KickRight and w2 of GuardToKick.

Figure 5. Confusion Matrix for MuHAVi-14

der. For instance, “Collapse” and “Standup” as well as
actions involving many overlapping poses in the same or-
der (e.g. “GuardToKick” and “KickRight”) can be distin-
guished. Action-wise comparisons to the temporal baseline
approach are listed in Tables 1 and 2.

5.1.2 Identical Training and Test Cameras, Novel Test
Actor

In this experiment, we trained our classifier on all instances
related to one actor and tested on the data of the other actor
and calculated average classification rates. A comparison

with the baseline is given in Tables 3 and 4. Note that the
baseline evaluation in [17] was based on training on Actor-1
and testing on Actor-4. However, we alternatively consid-
ered both actors for training and testing.

Again, we observe a significant improvement in accu-
racy for both MuHAVi-14 and MuHAVi-8 collections. An
increase of about 12% in accuracy, for MuHAVi-14, shows
the relative robustness of our approach towards individual
characteristics of actors. Althoug human silhouettes dif-
fer in test and train data, the novel combination of scale-
invariant features with discriminative keyposes learning ex-
hibits improved performance.



Figure 6. Confusion matrix for MuHAVi-8

Accuracy (%)
Action Baseline[17] Our Approach
CollapseLeft 50.0 87.5
CollapseRight 62.5 87.5
GuardToKick 81.2 75.0
GuardToPunch 62.5 62.5
KickRight 93.7 100.0
PunchRight 100.0 100.0
RunLeftToRight 87.5 87.5
RunRightToLeft 87.5 100.0
StandUpLeft 0.0 25.0
StandUpRight 100.0 100.0
TurnBackLeft 100.0 50.0
TurnBackRight 87.5 87.5
WalkLeftToRight 100.0 100.0
WalkRightToLeft 87.5 100.0

82.35 86.03

Table 1. Action-wise comparison of our approach with the baseline
on MuHAVi-14

Accuracy (%)
Action Baseline[17] Our Approach
Collapse 100.0 100.0
Guard 100.0 96.9
KickRight 93.7 100.0
PunchRight 100.0 93.7
Run 93.7 93.7
StandUp 100.0 100.0
TurnBack 91.7 75.0
Walk 100.0 100.0

97.80 95.58

Table 2. Action-wise comparison of our approach with the baseline
on MuHAVi-8

5.1.3 Identical Training and Test Actors, Novel Test
Camera

This experiment aims to determine robustness of the algo-
rithm towards changes in the view-point. Here, we trained
our classifier on all instances captured by one camera and

Accuracy (%)
Action Baseline[17] Our Approach
CollapseLeft 75.0 87.5
CollapseRight 50.0 87.5
GuardToKick 0.0 68.7
GuardToPunch 0.0 25.0
KickRight 87.5 81.3
PunchRight 100.0 68.7
RunLeftToRight 100.0 75.0
RunRightToLeft 75.0 100.0
StandUpLeft 0.0 50.0
StandUpRight 100.0 75.0
TurnBackLeft 50.0 75.0
TurnBackRight 50.0 75.0
WalkLeftToRight 100.0 100.0
WalkRightToLeft 100.0 75.0

61.76 73.53

Table 3. Novel actor validation on MuHAVi-14

Accuracy (%)
Action Baseline[17] Our Approach
Collapse 75.0 100.0
Guard 50.5 75.0
KickRight 87.5 81.25
PunchRight 100.0 62.5
Run 87.5 75.0
StandUp 83.3 100.0
TurnBack 50.0 83.3
Walk 100.0 100.0

76.47 83.08

Table 4. Novel actor validation on MuHAVi-8

tested on data captured from the other camera. We alterna-
tively considered both camera-views for training and test-
ing. Our average results for the two cases are compared
with the baseline in Tables 5 and 6.

These results reflect the challenging nature of this prob-
lem. In particular, we notice a low performance of our
pose-based approach for the actions where the novel pose
involves high self-occlusion (e.g. GuardToPunch and
PunchRight). We expect that, if size and variety of training
data were increased (e.g. by adding more actors or views
to the training set), our simple yet effective approach will
perform even better.

5.2. Weizmann Data set

The Weizmann data [4] is a popular single-view action
data set which contains video samples for 10 different ac-
tions performed by 9 actors. A common tradition is to con-
sider only 9 actions by eliminating the samples of the action
“skip”. In this paper, we consider readily available silhou-
ettes for the 9 actions in Weizmann data set. It is worth
noting that many of these silhouettes are very noisy (e.g.



Accuracy (%)
Action Baseline[17] Our Approach
CollapseLeft 0.0 87.5
CollapseRight 50.0 37.5
GuardToKick 0.0 50.0
GuardToPunch 25.0 0.0
KickRight 87.5 100.0
PunchRight 75.0 62.5
RunLeftToRight 0.0 50.0
RunRightToLeft 0.0 50.0
StandUpLeft 50.5 25.0
StandUpRight 100.0 62.5
TurnBackLeft 100.0 25.0
TurnBackRight 75.0 62.5
WalkLeftToRight 0.0 0.0
WalkRightToLeft 75.0 62.0

42.6 50.0

Table 5. Novel view validation on MuHAVi-14

Accuracy (%)
Action Baseline[17] Our Approach
Collapse 62.5 56.3
Guard 18.7 40.6
KickRight 87.5 87.5
PunchRight 75.0 56.2
Run 0.0 37.5
StandUp 83.3 91.6
TurnBack 83.3 83.3
Walk 37.5 37.5

50.0 57.4

Table 6. Novel view validation on MuHAVi-8

jack pjump side wave2

Figure 7. Examples of some noisy silhouettes in Weizmann data
set

see Figure 7). We use them as they are without any prepro-
cessing.

For assessing the performance of our approach on this
data set, we resorted to leave-one-out cross validation. We
used 80 points on the contour and the best performance was
achieved for only 20 key poses per action. The resulting
confusion matrix is shown in Figure 8.

In Table 7, we compare our approach to other non-
temporal approaches. Only Weinland and Boyer [21]
achieve significantly higher accuracy than the proposed.

Figure 8. Confusion matrix for Weizmann data set (excluding
“skip”)

Approach Act. Seq. Acc.(%)
Thurau 2007 (unigram) [18] 10 90 86.6
Weinland and Boyer 2008 [21] 10 90 100
Baysal et al. 2010 [3] 9 81 92.6
This Paper 9 83 91.6

Table 7. Comparison of our approach with other non-temporal ap-
proaches on Weizmann data set

However, recall that, in contrast to their method, our ap-
proach does not require any subsampling of the data. More-
over their approach is based on forward selection of key
poses which is computationally expensive for large and ver-
satile action datasets. Thurau [18] reports accuracies of
86.6% and 94.4% by using non-temporal unigrams and 2-
frame temporal bigrams, respectively. In terms of method-
ology, the work of Baysal et al. [3] is most close to ap-
proach. It appears that by using a contour-based pose fea-
tures, we can achieve very close accuracy . Notice further
that we achived this accuracy by using only 20 key poses
per action compared to 47 key poses per action in their
approach. Moreover our approach is very efficient for its
feature extraction, dimensionality reduction, and similarity
measure.

6. Conclusion

In this paper, we presented a novel, simple yet effective
approach to pose based action recognition in videos and still
images. We could show that employing a contour based
pose representation and an efficient weighting scheme that
favors distinctive key poses, a very high recognition ac-
curacy can be achieved on standard benchmark data, even
though the presented approach does not incorporate any
temporal information or implicit modeling of the underly-
ing sequence of key poses.

While we are confident that the addition of temporal cues
might further increase the accuracy, the high recognition
rates for a strictly pose based approach are an interesting
result. Although our approach already outperforms a recent



baseline in more difficult novel-actor and novel-view sce-
narios, it may be further improved by enlarging the set of
training data.

In our future work, we are mainly interested in applica-
tion scenarios involving large image databases and hand-
held devices.An important aspect of future research will
therefore be to estimate how many training samples are
required for a sufficiently accurate estimation of key pose
weights. From what we could observe so far, it appears that
the weighting coefficients converge quickly but it remains
to see if this is an artifact of the data sets considered here.
Also, we are currently invoking clustering methods based
on archetypal analysis [2] that are designed to yield more
distinctive key poses during training.
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