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Abstract

We tackle the problem of 3D human pose estimation
based on monocular images from which 2D pose estimates
are available. A large number of approaches have been
proposed for this task. Some of them avoid to model the
mapping from 2D poses to 3D poses explicitly but learn the
mapping using training samples. In contrast, there also ex-
ist methods that try to use some knowledge about the con-
nection between 2D and 3D poses to model the mapping
from 2D to 3D explicitly.

Surprisingly, up to now there is no experimental com-
parison of these two classes of approaches that uses exactly
the same data sources and thereby carves out the advan-
tages and disadvantages of both methods. In this paper
we present such a comparison for the most commonly used
learning approach for 3D pose estimation – the Gaussian
process regressor – with the most used modeling approach –
the geometric reconstruction of 3D poses. The results show
that the learning based approach outperforms the model-
ing approach when there are no big changes in viewpoint
or action types compared to the training data. In contrast,
modeling approaches show advantages over learning ap-
proaches when there are big differences between training
and application data.

1. Introduction
Human pose estimation allows for a wide field of appli-

cations such as video search, visual surveillance and human
computer interfaces used e.g. in video games. Full body 3D
human pose estimation from monocular images is a difficult
problem since the depth information is lost when projecting
from 3D space to 2D image plane. For this, a huge set of ap-
proaches have been suggested to recover the 3D pose based
on monocular images.

One class of approaches tries to map image features di-
rectly to 3D poses. For example, Agarwal and Triggs [1] use
a grid of local gradient orientation histograms, i.e. a dense
sampling of interest points, and learn a mapping to 3D poses

using direct regression. Another class of approaches first
tries to map image features to 2D poses and then maps
2D pose estimates to 3D poses. For example, Andriluka et
al. [3] first identify consistent sequences of 2D poses (called
‘tracklets’) and formulate the 3D pose estimation problem
within a Bayesian framework while the prior probability of
3D poses is modeled using a hierarchical Gaussian process
latent variable model.

For the later class there exist two subclasses that dif-
fer in the way in which 2D poses are lifted to 3D poses.
Learning approaches try to learn this mapping using train-
ing examples and adapt some mapping using e.g. support
vector machine, relevance vector machine [2], or Gaussian
process Regressors. Modeling approaches try to model this
mapping from 2D to 3D poses explicitly by using knowl-
edge about the inverse of the 3D to 2D mapping. Although
the learning and modeling approaches are quite different by
concept for the 2D to 3D lifting task it has not yet been in-
vestigated systematically how the two classes of approaches
differ and what are the advantages of each class.

The main contribution of this paper is to close this gap.
For this we present a systematic evaluation by choosing a
typical representative method of each class and compare
their 3D pose reconstruction performance directly using the
same 2D input data. For the class of modeling approaches
we choose a geometric reconstruction approach – origi-
nally presented for a restricted parallel projection camera
model [13], used in several following works (e.g. [5], [7]),
and recently extended to a realistic perspective projection
camera model [4]. Refer to section 2 for detailed expla-
nation of the geometric method. For the class of learn-
ing approaches we choose the Gaussian process regression
since it is successfully used in many pose estimation works
(e.g. [15]). Support vector machine and relevance vector
machine [2] are more efficient in training as they are pick-
ing the most representative training samples for the model.
But due to a better predicting accuracy, we choose Gaussian
process regressor. We evaluate both methods on the TUM
kitchen and the HumanEva dataset.
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Figure 1. Geometric reconstruction of 3D poses. Using the foreshortening information of projected limb lengths l′ij we can reconstruct the
displacement in ∆z = z1 − z2 in z direction even for perspective camera models.

2. Geometric reconstruction of 3D Poses
A typical example of a modeling approach is the work

presented by Taylor [13]. Assuming that the 3D to 2D im-
age formation process can be modeled by a scaled ortho-
graphic projection, a 3D object point (x, y, z) is mapped to
its corresponding 2D image point (u, v) by u = s · x, v =
s · y. This corresponds to a parallel projection with a
subsequent scaling with scaling factor s. If we know the
3D length of a limb l between two body marker points
(x1, y1, z1) and (x2, y2, z2) and their corresponding pro-
jected points (u1, v1) and (u2, v2) we can reconstruct the
displacement ∆z := z1−z2 of the limb in z direction based
on the measured length of the foreshortened limb in the 2D
image. Since:

u1 − u2 = s · (x1 − x2), v1 − v2 = s · (y1 − y2) (1)

we can reformulate the Euclidian equation to get:

l
2

= (x1 − x2)
2
+ (y1 − y2)

2
+ (z1 − z2)

2 (2)

⇔ (z1 − z2) = ±
√
l2 − (x1 − x2)2 − (y1 − y2)2 (3)

⇔ ∆z = ±

√
l2 −

(u1 − u2)2 + (v1 − v2)2

s2
(4)

Note that the displacement ∆z can be reconstructed for
one limb only up to a sign (+ or −) ambiguity in equa-
tion 4 since we cannot decide which of the limb endpoints
(x1, y1, z1), (x2, y2, z2) is nearer to the camera. Having two
reconstruction possibilities for one limb, for a body model
with N limbs we have 2N reconstruction possibilities for
the whole body pose.

To solve this ambiguity, Taylor’s original work assumed
that a user labels which endpoint of each limb is nearer to
the camera. Thus the original method was only a semi-
automatic 3D pose reconstruction approach. To choose one
of this 2N solutions automatically different approaches have
been suggested. Jiang [5] compares each of the candidate

poses with over 4 million pose examples from the CMU mo-
tion capture database to assess the probability of each candi-
date pose. Mori and Malik [7] compare an unknown image
with a sample database of images using shape context de-
scriptor matching. The sample images are labeled with 2D
body part locations and the information for each limb which
of its endpoints is closer to the camera. Based on the shape
context descriptor matches the 2D body part location and
the information which limb endpoint is nearer to the camera
is transferred to the unknown image. Wei and Chai [17] also
tackle the problem of how to determine the unknown scale
factor s. The set of limb projection constraints for all limbs
of a body model in equation 4 are augmented by further
constraints based on limb symmetries and fixed lengths on
some rigid subparts of the human body such as the pelvis.
Nevertheless, sometimes these additional constraints are not
sufficient to solve the ambiguity. In such cases the pose re-
construction stops and the user has to solve the ambiguity
manually.

Beside this ambiguity, Taylor’s original method is more
applicable in conditions that cameras are placed far from the
captured objects. The model assumes that the projected size
of a person or a limb does not depend on its distance to the
camera which is not true when cameras are near. Note that
the z coordinate has no influence on the resulting (u, v) co-
ordinate. Parameswaran and Chellappa [9] therefore try to
deal with a new camera model, i.e. perspective projections.
Possible head orientations are reconstructed using a set of
polynomial equations, epipolar geometry is recovered, and
the rest of the body joint coordinates are computed using
knowledge about the limb lengths in a recursive manner.
But in their approach the authors have to make two strong
assumptions: the torso twist has to be small – which is not
true for many poses – and the locations of four markers on
the head have to be given (e.g. forehead, chin, nose and left
or right ear) – which is hard to be provided automatically
since it would mean a very precise automatic localization



of these markers on the head.
An approach that does not need to make such assump-

tions and nevertheless adopts a perspective projection cam-
era model was presented recently [4]. In the perspective
camera model a 3D point (x, y, z) is mapped to the 2D point
(u, v) with u = f xz + c0, v = f yz + c1. f is called focal
length, (c0, c1) is called principal point. For a known cal-
ibrated camera, we know the principal point (and the focal
length), and can correct the 2D image coordinates for the
principal point translation vector (u′ = u− c0, v′ = v− c1)
and therefore assume (c0, c1) = (0, 0). Since

xi =
ziui

f
, yi =

zivi

f
(5)

we can reformulate the Euclidian equation into a
quadratic equation for the zi coordinate as following (refer
to [4] for deduction details):

l
2
ij = (

ziui

f
−
zjuj

f
)
2
+ (

zivi

f
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f
)
2
+ (zi − zj)

2(6)

. . .

⇔ zi1/2 = −
Czj

2A
±

√
(
Czj

2A
)2 − (

B

A
z2j −

f2l2ij

A
) (7)

Equation 7 shows how to reconstruct the z coordinate of
a child marker zi given already reconstructed zj coordinate
of a parent marker. We further need to provide limb lengths
lij (connecting marker i with j), and the 2D coordinates
(u, v) of the markers within the image which are supposed
to be provided by a 2D pose estimator.

Assuming a perspective projection camera model, we
first have to start with an estimate for the z coordinate of
the root marker of the kinematic tree, then we can apply
equation 7 in a recursive manner: having computed the z
coordinate for a parent marker, we can compute the two pos-
sible solutions for the z coordinate of the child marker and
step down further in the kinematic tree. Since there are still
two solutions for the z coordinate (either + and − in equa-
tion 7) we end up with a binary reconstruction tree with
2N mathematically possible poses. To reduce the number
of pose candidates already during the binary reconstruction
tree traversal it was shown in [4] that it is possible to check
for abnormal joint angles based on anatomical joint limits in
the knees and elbows and prune branches of the reconstruc-
tion tree whenever we encounter anatomical violations.

To select a final 3D pose estimate from the remaining set
of pose candidates, we can assign a probability

P (p⃗) =
∏

P (j⃗i) (8)

for each pose candidate p⃗, where P (j⃗i = (α, β, γ)) is
the probability to find a joint in a certain configuration
j⃗i = (α, β, γ) (the three Euler angles) which can be learned
by observing motion capture sample data. The z coordi-
nate of the root marker can be estimated by the distance of

the person to the image plane. In [4] the proposed solution
for the estimation of the person to camera distance was re-
constructing all possible poses using different distance esti-
mates and then choose the distance where the average pose
probability takes on a maximum. This approach is success-
ful for estimating the person ↔ camera distance since for
distances different from the ground truth distance, the re-
constructed poses have to be squeezed (distance too small)
or pulled apart (distance estimate too big) into the perspec-
tives rays bundle which in turn results in unlikely joint an-
gles and small pose probabilities. For further details we
refer the reader to [4].

3. Regression of 3D poses
The Gaussian process regressor is currently the most

widespread representative for learning approaches in the
pose estimation community since it has been proved to be an
effective approach for the nonlinear 2D to 3D pose mapping
problem [16]. The main idea of Gaussian process regression
is to map unknown test data to a prediction by interpolating
the training data weighted by the correlation between the
training and test data. In our method, we take normalized
2D body part positions as input and output a 3D pose pre-
diction – represented as a vector of direction cosines of limb
orientations. In the following subsections, we will explain
detailed representations and settings for the Gaussian pro-
cess regressor used here.

3.1. Normalized 2D body part positions

(a) (b)

Figure 2. (a) The 3D stick figure model used for representing hu-
man pose with 2D body part indices. Thirteen body parts corre-
sponding to the markers used in motion capture are used [12]. (b)
The angles (θxl , θ

y
l , θ

z
l ) between the limb l and the axes [11].

From detected body part positions of a performer, we
take 13 body parts. Correspondence of body parts and
3D stick figure model is shown in figure 2(a). The
2D body part positions are collected within a vector



BP = [x1, y1, x2, y2, . . . , xi, yi, . . . , x12, y12, x13, y13]
where (xi, yi) is the 2D position of the i-th body part. For
representing the 2D pose independently of the persons’s
size and distance to the camera, we normalize this 2D pose
vector:

BPnorm = (BP +Moff ) ∗Mscale (9)

where ∗ means element-wise multiplication and

Mscale = [
1

yrange

,
1

yrange

, . . . ,
1

yrange

,
1

yrange

] (10)

Moff = [xoff , yoff , xoff , yoff , . . . , xoff , yoff ] (11)

xoff = −min(X) + (yrange − xrange)/2 (12)

yoff = −min(Y ) (13)

whereX and Y are vectors of all x and y coordinate values
of the 2D pose in the frame.

For upright standing persons, the range of y coordinate
values is typically bigger compared to the range of x coordi-
nate values. For this, we normalize both x and y coordinates
by y range in each frame (Mscale). This makes sure, that we
keep the aspect ratio of the performer and that normalized
y coordinates range from 0 to 1. The normalized 2D part
positions are the input of the regressor.

3.2. 3D human pose representation

The output of our regressor is 3D human poses. Accord-
ing to our experiments, with the dimension of the output
from regressor increases, the regressor will take more time
for training parameters. We use the same representations
for human posture as in [11], considering this representation
is concise and unambiguous. We model a human pose us-
ing twelve rigid body parts: hip, torso, shoulder, neck, two
thighs, two lower legs, two upper arms and two forearms.
These parts are connected by a total of ten inner joints, as
shown in figure 2(a). For defining a local coordinate sys-
tem in the hip, we use the direction of the torso for the y
axis and the direction vector pointing from the left hip to
the right hip as z axis. The x axis is then given by cross
product of y axis and z axis.

The pose of an actor in an image frame is represented
as a vector of direction cosines, i.e. the cosines of the an-
gles between the limb direction vectors and the three coor-
dinate axes of the root coordinate system. That is, limb ori-
entation is modeled using three parameters, without model-
ing self rotation of limbs around its axes, as shown in fig-
ure 2(b). The overall posture of the subject for a frame is
represented using a vector of direction cosines measured on
twelve limbs. This results in a 36-dimensional representa-
tion of the pose:

ψ = [cos θ
x
1 , cos θ

y
1 , cos θ

z
1 , . . . , cos θ

x
12, cos θ

y
12, cos θ

z
12], (14)

where θxl , θyl and θzl are the angles between the limb l and
the axes of the root coordinate system in the hip as shown
in figure 2(b).

3.3. Gaussian process regression

Gaussian processes yield a method for specifying a prob-
ability distribution over functions by specifying a mean and
a covariance function for the function values f(x). By train-
ing a Gaussian process with sample data {x, f(x)} the vari-
ance of the Gaussian process becomes small for function
values f(x) at supporting points x included in the training
data, which corresponds to an increased certainty about the
function values at these points, while at other points x′ the
variance of the Gaussian process remains high which corre-
sponds to a high uncertainty about the function values f(x′)
at such points.

More formally, a Gaussian process is completely spec-
ified by a mean function and covariance function. If we
denote the mean function as m(x) and the covariance func-
tion as Cov[f(x1), f(x2)] = k(x1,x2), a Gaussian process
is denoted as f(x) ∼ GP(m(x), k(x1,x2)), where

m(x) = E[f(x)] (15)

k(x1,x2) = E[(f(x1) −m(x1)) (f(x2) −m(x2))] (16)

The covariance function specifies how two function val-
ues f(x1) and f(x2) (the function values are considered as
random variables) can change, given two arguments x1,x2.
Since we want the Gaussian process to interpolate contin-
uously between supporting points, a continuous covariance
function is used as well. A typical covariance function that
is used for a Gaussian process is the squared exponential:

k(x1,x2) = θ
2
1 exp(−

(x1 − x2)
2

2θ22
) (17)

where θ1, θ2 are called the amplitude and lengthscale hy-
perparameters respectively. This covariance function makes
sure that the covariance of two function values f(x1) and
f(x2) of nearby x1, x2 is high (which will result in a smooth
function), while the covariance of f(x1) and f(x2) is low,
if x1, x2 are far away.

Given a 2D pose estimate which is represented as the 26
dimensional vector BPnorm we train one Gaussian process
to predict each of the 36 dimensions of the 3D pose vector ψ
separately. For the Gaussian process training and prediction
we used a reference implementation1.

4. Experiments
In this section, we describe the settings for the experi-

ments and how we measure the error of an estimated pose
both for the regression and the geometric reconstruction

1
http://www.gaussianprocess.org/gpml/code/matlab/doc/



method. Based on a comparison of these errors, we an-
alyze and conclude advantages and disadvantages of each
method.

4.1. Training and Test Data Composition

We chose the public available HumanEva [12] and the
TUM kitchen dataset [14] for an exhaustive evaluation and
comparison of both methods since both datasets provide 3D
motion capture ground truth data which allows to compute
an error for each estimated pose. Furthermore, intrinsic and
extrinsic camera parameters are provided as well which al-
lows to project the 3D poses into the image and thereby pro-
vide 2D ground truth poses as well. Both datasets contain
sequences where different subjects (4 for HumanEva, 4 for
TUM kitchen) perform different actions (walking, boxing,
laying a kitchen table, etc.) recorded from different view-
points (7 for HumanEva, 4 for TUM kitchen). These vari-
ations of performers, action types and viewpoints between
training and test data, allow to define a set of experiments in
which different capabilities of both methods can be tested.
We use 4 categories of experiments:

1. train on a sequence recorded from one camera view
→ test on a sequence recorded from another view
(1a/1b/1c/1d). The change of viewpoint can be weak
(1a/1b) or strong (1c/1d).

2. train on a sequence comprising a subject Si → test on
a sequence comprising another subject Sj 2 (2a/2b),

3. train on a sequence showing one action class A1 →
test on a sequence showing another action class A2

(3a/3b),

4. train on a sequence from HumanEva (TUM kitchen)
dataset → test on a sequence from the other dataset,
i.e. TUM kitchen (HumanEva) (4a/4b)

Both approaches, the regression and the geometric re-
construction method, map 2D input poses to 3D pose es-
timates. In experiments 1a-4b we test on ground truth 2D
input poses and estimated 2D poses as well (see table 1).
The estimated 2D poses stem from a Implicit Shape Model
based 2D pose estimator, that learns the spatial relation be-
tween SIFT features and 15 body parts and uses this learned
relationship to vote for the location of each body part. The
method and the quality of these estimated 2D poses is de-
scribed in detail in [8].

The quality of estimated 2D input poses depends on the
performance of the 2D pose estimator. To be independent
from this quality of a 2D pose estimator we also added two
further experiments 5a/5b (compare table 1 and table 2)
in which we put more and more noise onto ground truth
2D poses and evaluate the capability of both the regression

2Person Si within the TUM kitchen dataset is different from the person Si within the HumanEva dataset

and geometric reconstruction method to estimated 3D poses
with such 2D poses of different noise levels. Here, a noise
level of n% means that we added a random translation vec-
tor (∆x,∆y) to each marker position where the length of
this random vector is in the range of 0-n% of the person’s
height (measured in pixels) in the current frame.

In the learning phase the regression method uses the
(2D ground truth pose, 3D ground truth pose) pairs of the
training data to train the Gaussian processes and fix the
hyper-parameters. In contrast, the geometric reconstruction
method uses only the 3D ground truth poses of the training
data to learn joint angle probabilities for all joints.

4.2. Error Measurements

Since we use the same input 2D poses (ground truth /
estimated / noisy) for both experiments this allows us to
compare both approaches - the regression and the geomet-
ric reconstruction - based on their 3D pose estimation per-
formance which is measured by the average angular error
and average absolute marker position error of the estimated
3D poses compared to the ground truth 3D poses. Suppose
predicted limb angles Θ̂ and ground truth limb anglesΘ are
denoted as

Θ̂ = [θ̂
x
l1
, θ̂

y
l1
, θ̂

z
l1
, . . . , θ̂

x
l14
, θ̂

y
l14
, θ̂

z
l14

] (18)

Θ = [θ
x
l1
, θ

y
l1
, θ

z
l1
, . . . , θ

x
l14
, θ

y
l14
, θ

z
l14

] (19)

then the angular error is defined as:

ErrAng =

J∑
i=1

|Θi − Θ̂i| mod 180◦

J
(20)

where J = 3 · 14 (3 Euler angles, 14 limbs) and “mod” is
to deal with angle singularity problem.

An angular error in a joint at a high level of the kinematic
tree (e.g. shoulder joint) will have a bigger impact on the
resulting pose than an angular error in a joint at a low level
of the kinematic tree (e.g. wrist joint). For this, we do not
only compute the angular error ErrAng but also compare
the absolute marker positions of the estimated poses with
the ground truth pose.

Since the geometric reconstruction method first recon-
structs 3D marker locations and then computes joint angles
based on the reconstructed marker positions this compari-
son is straightforward. In contrast, the regression method
maps a normalized 2D body part location vector BPnorm
to a 3D joint angle vector ψ such that there are at first
no estimated 3D marker locations at all. To compute 3D
marker location estimates, we assume a person of average
U.S. size [6] and use pre-computed relative limb length ra-
tios to compute absolute limb length estimates. Based on
the estimated joint angles and these estimated limb lengths



Exp. training testing change of Geometric reconstruction Regression
2D input Ground truth Estimation Ground truth Estimation

[◦] [mm] [◦] [mm] [◦] [mm] [◦] [mm]

1a TUM, 0-0-cam3, S1 TUM-0-0-cam2, S1 viewpoint (weak) 6.12 143.51 13.44 230.72 0.12 1.82 7.358 146.83
1b HE, walk-cam1, S1 HE, walk-cam2, S1 viewpoint (weak) 7.47 155.77 10.74 187.57 1.39 22.27 3.79 78.80
1c TUM, 0-0-cam1, S1 TUM-0-2-cam3, S1 viewpoint (strong) 5.24 135.14 10.93 194.49 5.48 96.69 5.85 102.71
1d HE, box-cam1, S1 HE, box-cam2, S1 viewpoint (strong) 8.15 159.14 11.59 189.33 4.49 85.02 5.05 95.56

2a TUM, 0-0-cam3, S1 TUM-0-3-cam3, S2 person 6.53 156.43 12.20 197.92 5.52 89.09 7.92 140.93
2b HE, walk-cam1, S1 HE, walk-cam1, S2 person 8.61 158.41 11.71 194.97 3.87 64.29 5.12 95.18

3a HE, walk-cam1, S2 HE, box-cam1, S2 action 16.65 210.78 17.18 202.41 11.48 197.23 11.53 192.57
3b HE, box-cam1, S2 HE, walk-cam1, S2 action 9.10 153.64 12.02 197.35 9.34 166.02 9.13 160.09

4a HE, walk-cam2, S1 TUM, 0-2-cam3, S2 dataset 7.57 155.15 13.48 214.47 8.40 137.11 8.47 139.70
4b TUM, 0-2-cam3, S2 HE, walk-cam2, S1 dataset 8.07 160.06 10.98 188.34 7.08 123.78 7.52 131.10

Table 1. Experiments definition and 3D pose reconstructions errors for both the geometric reconstruction and regression approach. For
each experiment we present the average angular and average marker position error of the estimated poses resulting from the geometric
reconstruction and the regression approach compared to the ground truth poses.

Exp. training testing Geometric reconstruction
2% 4% 6% 8% 10%

[◦] [mm] [◦] [mm] [◦] [mm] [◦] [mm] [◦] [mm]

5a TUM, 0-0-cam3, S1 TUM-0-0-cam2 6.69 149.19 7.83 160.43 9.14 175.17 10.51 191.87 11.75 205.82
5b HE, walk-cam1, S1 HE, walk-cam2, S1 8.00 159.03 8.97 168.07 10.04 177.59 11.42 189.02 12.53 198.49

Table 2. 3D pose reconstruction errors for geometric reconstruction method with noisy 2D input poses and different noise levels.

Exp. training testing Regression
2% 4% 6% 8% 10%

[◦] [mm] [◦] [mm] [◦] [mm] [◦] [mm] [◦] [mm]

5a TUM, 0-0-cam3, S1 TUM-0-0-cam2 5.72 112.01 5.77 113.11 5.85 115.01 5.94 117.08 6.03 119.21
5b HE, walk-cam1, S1 HE, walk-cam2, S1 1.55 24.70 1.90 31.34 2.27 39.53 2.59 47.53 2.85 54.73

Table 3. 3D pose reconstruction errors for regression method with noisy 2D input poses and different noise levels.

we can then reconstruct 3D marker locations as well. If
we denote these estimated marker positions P̂ and ground
marker positions P:

P̂ = [x̂1, ŷ1, ẑ1, . . . , x̂15, ŷ15, ẑ15] (21)

P = [x1, y1, z1, . . . , x15, y15, z15], (22)

then the average marker position error is defined as

Errpos =

M∑
i=1

|Pi − P̂i|

M
. (23)

where M = 3 · 15 (x/y/z coordinates, 15 markers). ErrAng
is specified in degrees, Errpos in mm.

4.3. Results

The 3D pose estimation error results of all experiments
are shown in table 1, table 2, and table 3.

For the case of estimated 2D input poses (see table 1) and
noisy 2D input poses (see table 2 and table 3) the results
are obvious: the regression method outperforms the geo-
metric reconstruction method in all scenarios. This shows
that the Gaussian process learning based approach is able
to use the training data samples sufficiently to interpolate

to new data. The estimated 3D poses generated from the
regression method are substantially better than for the 3D
pose estimates obtained from the geometric reconstruction
method. This shows that the geometric reconstruction ap-
proach presented in its puristic form here is not able to
deal with noisy 2D input poses. As the 2D input poses
get more and more noisy, errors from regression method
increase slower compared to errors of the geometric recon-
struction method (compare table 2 with table 3). The reason
is that the wrong 2D body part locations will lead to wrong
2D limb lengths which in turn will lead to wrong displace-
ment values (see equation 4 and equation 7). The working
principle – using the foreshortening information of limbs to
reconstruct the limb displacement in z direction – continu-
ously loses its basis with increasing noise in the 2D input
poses (see table 2). This underlines the need to augment
modeling based approaches for 2D to 3D pose estimation
with some explicit handling of noise while it is not neces-
sary for the regression / learning based approaches.

For the case of using 2D ground truth input poses, the
average 3D pose error is for the regression method 5.7◦

(averaged over all experiments 1a-4b) compared to 8.3◦

for the geometric reconstruction approach. This shows that
the regression method yields 3D pose estimates with an er-



Exp /2D Input Ground truth pose Geometric estimation Ground truth pose Regression estimation

1a / gt

1c / gt

2a / gt

3b / est

4b / est

Figure 3. Qualitative 3D pose estimation samples. Column “Exp /2D Input” shows the experiment number and 2D pose input type. There
are two types of 2D input poses. “gt” means ground truth 2D pose and “est” means estimated 2D pose. 1st+2nd column: ground truth
3D pose and corresponding estimated 3D pose by the geometric reconstruction approach. 3rd+4th column: ground truth 3D pose and
corresponding estimated 3D pose by the Gaussian process approach.

ror of about 2.6◦ lower than the modeling approach used
here. Especially due to the fact that the Gaussian pro-
cess regressor yields better 3D pose estimates in average,
it is interesting that nevertheless in some cases, the geomet-
ric reconstruction method could outperform the regression
method slightly (1c/3b/4a). We trace this back to the fact,
that learning based approaches run into problems if the test
data is substantially different from the training data. This
is the case in experiment 1c where we find a big viewpoint
change, in 3b where we find a change of action, and in ex-
periment 4a where we switched from one dataset to another.
We expect an even bigger difference if we compute the joint
angle probabilities on a bigger variety of motion capture

data compared to the situation here in which we use just
one dataset to estimate the joint angle probabilities. In sce-
narios, in which there are new actions, viewpoints or other
changes compared to the training data we expect the model
based approaches to be the better choice since then interpo-
lation capabilities of learning based approaches will not be
sufficient to generalize to the new data.

When there is a big variance regarding the action type,
the regression method has problems predicting the 3D poses
correctly, because no similar poses are learned in training.
If variances are only present for certain limbs, for exam-
ple upper body limbs or lower body limbs, the regression
method can correctly predict the body parts that have sim-



ilar orientation as in training data, e.g. experiment 4b with
estimated 2D body part input in figure 3. This is due to the
fact that every limb orientation in the regression method is
estimated separately from others, in contrast to the model-
ing approach. Thus, for the regression method errors from
the root of the kinematic tree structure will not transmit to
leave nodes. Another problem occurs when there are ambi-
guities in mapping, e.g. in experiment 1c with ground truth
2D body part input in figure 3, the predict pose is left-right
flipped compared with ground truth 3D pose. This is due to
lack of depth information in 2D images, the same 2D pose
might correspond to more than one 3D poses.

5. Conclusion and Future Work

In this paper, we compared the most commonly used
learning approach – the Gaussian process regressor – with
the most used modeling approach – the geometric recon-
struction of 3D poses based on Taylor’s method. We test on
two public datasets: TUM kitchen and HumanEva data. We
experimented on ground truth 2D body part data, noisy 2D
ground truth body part data and real detected 2D body parts.
Our conclusion is that regression methods perform better in
conditions with minor viewpoint changes and minor action
variances between training and test data. In contrast, the
geometric method is more suitable in cases where there are
major viewpoint and action type changes.

For future work, one obvious extension of the geomet-
ric reconstruction approach will deal with uncertainty and
noise from the 2D pose estimator. Also, we would like to
compare with other solutions. Peng et al. [10] propose an
interesting geometric solution. While they need one frame
with specific limb configuration, it is nevertheless mathe-
matically formulated. Also Zhao et al. [18] solve posture
reconstruction problem using energy minimization. By in-
corporating these methods, we can get a border view of pose
reconstruction problem.
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