
A discriminative prototype selection approach
for graph embedding in human action recognition

Ehsan Zare Borzeshi, Massimo Piccardi, Richard Yi Da Xu
Faculty of Engineering and Information Technology
University of Technology, Sydney (UTS), Australia

{Ehsan.ZareBorzeshi, Massimo.Piccardi, YiDa.Xu}@uts.edu.au

Abstract

This paper proposes a novel graph-based method for
representing a human’s shape during the performance of an
action. Despite their strong representational power, graphs
are computationally cumbersome for pattern analysis. One
way of circumventing this problem is that of transforming
the graphs into a vector space by means of graph embed-
ding. Such an embedding can be conveniently obtained
by way of a set of “prototype” graphs and a dissimilarity
measure: yet, the critical step in this approach is the se-
lection of a suitable set of prototypes which can capture
both the salient structure within each action class as well
as the intra-class variation. This paper proposes a new dis-
criminative approach for the selection of prototypes which
maximizes a function of the inter- and intra-class distances.
Experiments on an action recognition dataset reported in
the paper show that such a discriminative approach outper-
forms well-established prototype selection methods such as
center, border and random prototype selection.

1. Introduction and related literature

Many approaches have been proposed to date for human
action recognition, including bag-of-features [6] [11], dy-
namic time warping [2], hidden Markov models [32] and
conditional random fields [19]. However, the problem of
finding a suitable feature set to more effectively represent
the deformable shape of a human performing an action is
still partially unresolved. Graphs provide a very powerful
and flexible way to describe relations between parts, and
could therefore be used to encapsulate the object’s structure
and support human action recognition. However, a major
drawback of graph-based representations is that even basic
operations such as sums and products cannot be performed
on graphs, making them unsuitable for conventional pattern
recognition approaches based on feature vectors. One way
of resolving this problem is to apply graph embedding, con-

verting a graph into a point in a vector space. Amongst the
various graph embedding approaches [17] [31] [22] [7], we
employ prototype-based graph embedding for its theoreti-
cal simplicity. With this approach, a graph is converted to
an n-dimensional feature vector by way of a set of “proto-
type” graphs and a dissimilarity measure (often, a graph edit
distance): the feature vector consists of the distances be-
tween the graph and each prototype. In order for such vec-
tors to prove class-discriminative, the prototype set should
be able to cover the graph domain in a uniform way. How-
ever, this is difficult to ensure in principle since uniformity
over a graph domain is a vague concept.
In this paper, we study the use of class-based prototype
selection and propose a novel discriminative prototype se-
lection method maximizing a function of the inter- and
intra-class distances. The method is compared with well-
established class-based prototype selection methods such as
center, border and random prototype selection [17] [22].
The application addressed in this paper is action recogni-
tion in videos: in our approach, we first apply a tracker to
obtain a bounding box of each actor in each frame. Within
the bounding box, spatial feature points (SIFT [12]) are then
detected and used as nodes of a graph representing the hu-
man shape. Eventually, the graph is converted to a set of dis-
tances based on a prototype set and the probabilistic graph
edit distance (P-GED), a sophisticated edit distance capable
of learning edit costs from a training set [15]. The feature
vectors from the individual frames of each video are then
composed into a time series to describe the evolution of the
actor’s shape along the time dimension and permit action
recognition. As time-series classifier we have used the hid-
den Markov model; yet, conditional random fields or struc-
tural SVM could be equally applied - the classification al-
gorithm is not the focus of this paper. As action dataset, we
have used the KTH dataset [26] for its widespread past util-
isation, while we plan to extend the study to other datasets
such as the UCF sports action dataset [23], the Olympics
Sports dataset [16] and MuHAVi [28] in the near future.
The rest of the paper is organized as follows: a brief



overview of prototype-based graph embedding is offered by
section 2. In section 3, we describe the use of graph embed-
ding for action recognition. In section 4, we present an ex-
perimental evaluation of the proposed approach on the KTH
action dataset. Finally, we give concluding remarks and a
discussion of future work in section 5.

2. Overview of prototype-based graph embed-
ding

An attributed graph, g = (V,E, α, β), is a tuple defined
by

• V = {1, 2, ...,M}, a set of vertices (nodes),

• E ⊆ (V × V ), a set of edges,

• α : V → LV , a vertex labeling function, and

• β : E → LE , an edge labeling function.

Vertex and edge labels are restricted to fixed-size tuples,
(LV = Rp, LE = Rq , p, q ∈ N ∪ {0}). When attribute
graphs are used to represent objects, the problem of pat-
tern recognition changes to that of graph matching. One
of the most widely used methods for error-tolerant graph
matching is the graph edit distance (GED). The graph edit
distance between any two graphs is defined as the cost of
transforming the first graph into the second [8]. It mea-
sures the (dis)similarity of arbitrarily structured and arbi-
trarily labeled graphs and is flexible thanks to its ability to
cope with any kind of structural errors [8], [5]. The edit
transformation is usualy broken up into atomic edit oper-
ations which can be of six basic types: insertion, deletion
and substitution, for either nodes or edges, and noted as
(ei,n, ed,n, es,n, ei,e, ed,e, es,e). It can be proven that ev-
ery arbitrary graph can be transformed into another, equally
arbitrary graph by applying a finite sequence of edit op-
erations (also called an edit path). The distance between
the two graphs is defined as the minimum cost amongst all
edit paths transforming the first graph into the other. Let
gi = (Vi, Ei, αi, βi) and gj = (Vj , Ej , αj , βj) be a pair of
graphs in a set. The graph edit distance of such graphs is
formally defined as:

d(gi, gj) = min
(e1,...,ek)∈E(gi,gj)

k∑
l=1

C(el) (1)

whereE(gi, gj) denotes the set of edit paths between the
two graphs, C denotes the edit cost function and el denotes
the individual edit operation. Based on (1), the problem of
evaluating the structural similarity of two graphs is changed
into that of finding a minimum-cost edit path between them.

Among the various methods, the probabilistic graph edit
distance (P-GED) proposed by Neuhaus and Bunke [14],
[15] is capable of automatically inferring the cost function

from a training set of manually-paired graphs. P-GED mea-
sures the similarity of two graphs by a learned probability,
p(gi, gj), and defines the dissimilarity measure as:

d(gi, gj) = − log p(gi, gj) (2)

A further advantage of P-GED is its claimed ability to
learn from large sets of graphs with huge distortion between
samples of the same class, which makes it suitable for ap-
plication to vision problems [14], [15].

2.1. Graph embedding

In the literature, “graph embedding” refers interchange-
ably to the embedding of a graph as a whole into a point
in vector space, or the embedding of its set of nodes into a
set of corresponding points in vector space. In this work,
we assume the former meaning, although similar embed-
ding techniques can be applied in the two cases and for
other types of non-vectorial objects such as strings or trees
[21]. The embedding assumes that a set of objects is given
alongside distance values between any two objects in the
set. The goal is that of converting the set of objects into a
set of points in a vector space of given dimensionality while
ensuring certain properties or constraints. Well-known em-
bedding techniques include Laplacian eigenmaps, commute
times, symmetric polynomials, and kernel principal compo-
nent analysis, amongst others [1], [18], [31], [25]. After
the embedding of the initial set of objects, it is also possi-
ble to embed new, out-of-sample objects, albeit not always
straightforward. An alternative embedding approach is to
make use of a given set of “prototype” objects (or proto-
types, for short) which can equally embed in-sample and
out-of-sample data, in a way not unlike that of eigenvectors
in principal component analysis. Let G = {g1, g2, ..., gm}
be a set of graphs, P = {p1, p2, ..., pn} be a set of prototype
graphs with m > n, and d be a dissimilarity measure. For
embedding any graph gj ∈ G by way of P , the dissimilarity
measure dji = d(gj , pi) of graph gj to prototype pi ∈ P is
computed ∀i. Then, an n-dimensional vector (dj1, ..., djn)
is assembled from all the n dissimilarities. With this proce-
dure, any graph can be individually transformed into a vec-
tor of real numbers [22], [17]. Prototype-based embedding
is certainly the simplest and fastest embedding approach
and for these reasons is adopted hereafter.

2.2. Prototype selection

Based on the definition given in section 2.1, selecting
informative prototypes from the underlying graph domain
plays a critical role in graph embedding. In other words,
in order to obtain useful graphs’ representations in vec-
tor space, the set of prototypes, P = {p1, ..., pn, ..., pN},
should be uniformly distributed over the whole graph do-
main, at the same time avoiding redundancies in terms of



selection of similar graphs [17], [22], [10]. Prototype selec-
tion methods mainly sub-divide into class-independent (or
unlabeled) and class-based (or labeled) approaches. Class-
independent approaches select N prototypes globally for
the entire training set, C, and can be applied to unlabeled
training data. Class-based approaches are instead only pos-
sible if the training data are labeled into classes, and their
aim is that of selecting one prototype for each of N classes,
C1, ..., CN . Given that in our application graphs can be la-
beled into classes, in this work we have decided to adopt
class-based approaches. Various existing methods will be
reviewed in subsection 3.3.

3. Methodology
The approach used for human action recognition consists

of the following main steps:

• use of a modified tracker [4] to extract a bounding box
of each actor in each frame, and extracting the SIFT
keypoints within such a bounding box;

• for each bounding box, building a graph using the lo-
cations of the SIFT keypoints as nodes;

• embedding the graph into a feature vector by means of
P-GED with the prototype set of choice;

• concatenating the feature vectors for a single actor
from a whole video into a time series;

• applying a sequential classifier to the time series. As
sequential classifier, we have used the well-known hid-
den Markov model [20] and a variant to be detailed in
section 4.1.

The following subsections provide further details of the
approach.

3.1. Graph building

As a preliminary step, a modified tracker is used to ex-
tract a bounding box of each actor in each frame [4]. Over
the dataset at hand, (KTH [26]; details provided in sec-
tion 4), the tracker performs really well, providing bound-
ing boxes which almost invariably contain the actor in full
size. As the next step, a number of scale invariant feature
transform (SIFT) keypoints [12] are extracted within the ac-
tor’s bounding box in each video frame using the software
of Vedaldi and Fulkerson [30]. Based on the chosen thresh-
old, their number typically varies between 5 and 8. Ex-
ample results of this step are illustrated in figure 1. After
extraction, the location of each SIFT keypoint, (x, y), is ex-
pressed relatively to the actor’s centroid and employed as
a node label for an attributed graph describing the human’s
shape. In a preliminary study, we found that graphs with
only labeled nodes granted comparable accuracy to graphs

with both labeled nodes and labeled edges, yet resulted in
faster processing. We therefore decided to employ graphs
consisting only of labeled nodes.

Figure 1. Bounding box generated from a modified tracker [4] us-
ing the KTH action dataset and the extracted SIFT keypoints com-
posed into a graph.

3.2. Posture set

In order to identify a prototype set which could lead
to meaningful feature vectors in the embedded space, a
number of different reference postures was chosen to de-
scribe all human shapes in the action dataset. For KTH,
we arbitrarily chose a set of 16 different reference postures
across all human actions (running, walking, boxing, jog-
ging, hand-waving, hand-clapping). Such selected postures
should prove adequate for recognising human actions also
in any other dataset where the actors are approximately in
full view such as UCF Sports [23] and MuHAVi [28]. For
training purposes, we manually selected a number of differ-
ent frames varying in scenario (e.g. outdoor, outdoor with
different clothes, indoor), action (e.g. hand waving, hand
clapping, jogging) and actor (e.g. person01, person25, per-
son12) (see figure 2).

Figure 2. Examples of selected postures from the KTH action
dataset.

3.3. Prototype selection

As stated in subsection 2.1, an appropriate choice of the
prototype set, P , plays a critical role in this approach as it
impacts the classification accuracy. Given that we avail our-
selves of a labelled training set, we have decided to employ
class-based approaches for prototype selection. In the fol-
lowing, we describe three popular, existing approaches and
the approach proposed in this work.

In class-based center prototype selection (c-cps), a pro-
totype set, P = {p1, ..., pn, ..., pN}, is generated from a
labeled training set, C = {C1, ..., Cn, ..., CN}, with each
pn prototype located in, or near, the “center” of the graphs
from the n-th class, Cn. To implement the notion of cen-
ter, we select the median graph from sample set Cn =



{gn1, ..., gnj , ..., gnNn}, defined as the gnj graph such that
the sum of distances between gnj and all other graphs in Cn
is minimal [22]:

pn = arg min
gnj∈Cn

∑
gni∈Cn,gni 6=gnj

d(gnj , gni) (3)

As an alternative, class-based border prototype selection
(c-bps) chooses the prototype set, P , with each pn prototype
situated at the “farthest border” of its class, Cn. Again, the
notion of border is vague in class domain. The rationale
for this selection is that of having prototypes which are at
maximum distance from the training graphs and generate
feature vectors with the largest values. To implement it, we
select the marginal graph from the sample set of class Cn =
{gn1, ..., gnj , ..., gnNn

}, defined as the gnj graph such that
the sum of distances between gnj and all other graphs in Cn
is maximal [22]:

pn = arg max
gnj∈Cn

∑
gni∈Cn,gni 6=gnj

d(gnj , gni) (4)

Given the relative arbitrariness of the above selections, a
random choice of the class prototype is a plausible alterna-
tive. In class-wise random prototype selection (c-rps), each
pn prototype is randomly selected from class Cn with uni-
form probability [22]:

pn = gnj ∈ Cn, j ∼ p(k = 1...Nn) =
1

Nn
(5)

All of the above selection approaches choose the class’
prototype based solely on the graphs in the class. This is in a
way reminiscent of generative classifiers, where a class’ pa-
rameters are estimated based on only the samples from that
class. Discriminative classifiers, instead, choose parame-
ters based on the information from multiple classes at once,
maximizing objective functions such as the class margin,
Fisher discriminants and others, and often proving more ac-
curate than their generative counterparts. Inspired by dis-
criminative approaches, we propose herewith a class-based
discriminative prototype selection approach (c-dps), where
each pn prototype is chosen as the graph gnj that minimizes
the ratio between the sum of distances between gnj and all
other graphs in Cn and the sum of distances between gnj
and all graphs in the other classes, Cn:

pn = arg min
gnj∈Cn

∑
gni∈Cn,gni 6=gnj

d(gnj , gni)∑
gni∈Cn

d(gnj , gni)
(6)

This selection approach is analogous to minimizing the
ratio between the within-class and between-class scatter
matrices in vector spaces.

3.4. Feature vector

The embedding of a graph by any of the above prototype
selection methods leads to a 16-dimensional feature vector
describing the shape of a single actor in a frame. Time series
of such vectors may prove action-discriminative. Yet, we
decided to augment the feature vector by some basic infor-
mation about the actors’ global motion and location relative
to the bounding box. We thus added the horizontal displace-
ment between the bounding boxes of two successive frames
(which is proportional to the horizontal velocity) and the lo-
cation of the actor’s centroid relative to the bounding box.
This leads to an overall 19-dimensional feature vector with
information about the shape, motion and location of the ac-
tor in a frame. Figure 3 shows time series of the feature vec-
tor for a boxing action in KTH (the embedding is obtained
by c − dps). An analysis of the individual contributions of
the shape, motion and location information is presented in
[3].

Figure 3. The time-sequential values of a 19-dimensional feature
vector obtained from graph embedding based on the c − dps for
one action (boxing) performed by one subject in the KTH action
dataset.

4. Experiments
A popular action dataset, KTH [26], has been chosen to

compare the recognition accuracy from feature vectors ob-
tained with different prototype selection approaches. The
KTH human action dataset contains six different human ac-
tions: walking, jogging, running, boxing, hand-waving and
hand-clapping, all performed various times over homoge-
neous backgrounds by 25 different actors in four different
scenarios: outdoors, outdoors with zooming, outdoors with
different clothing and indoors. This dataset contains 2391
sequences, with each sequence down-sampled to the spatial
resolution of 160 × 120 pixels and a length of four sec-



onds on average. While this dataset consists of simplified
actions, it is challenging in terms of illumination, camera
movements and variable contrasts between the subjects and
the background. In some sense, KTH is a stepping stone to-
wards more recent datasets which add multiple views, non-
staged actions and other challenges.

4.1. Experimental set-up and results

In this section, the recognition accuracies for the feature
vectors extracted by the four different prototype selectors
are given. For accuracy evaluation, we have used the eval-
uation procedure proposed by Schuldt et al. in [26]. In
this procedure, all sequences are divided into three sets with
respect to actors: training (8 actors), validation (8 actors)
and test (9 actors). Each classifier is then tuned using the
first two sets (training and validation sets), and the accu-
racy on the test set is measured “blindly” by using the pa-
rameters selected on the validation set, without any further
tuning. All our experiments were performed on a personal
computer with an Intel(R) Core(TM)2 Duo CPU (E8500,
3.16GHz) and 4GB RAM using Matlab R2009b. As soft-
ware, we have used Murphy’s HMM toolbox for Matlab,
modified as needed [13].

4.2. Evaluation of feature vectors with maximum
likelihood training

The hidden Markov model (HMM) is a generative ap-
proach which can be used to recognise human actions in
time series. The assumption used in the following is that
each action class is in correspondence with one HMM. The
learning of the HMM parameters for each class is achieved
by the Baum-Welch re-estimation algorithm [20] and clas-
sification of an unseen observation sequence, Onew, is ob-
tained by maximum-likelihood (ML) classification. In other
words, let us denote as A = {a1, ..., ak, ..., aK} the set of
K different action classes; λ = {λ1, ..., λk, ..., λK}, the set
of HMM parameters associated with each action class in A;
O = {O1, ..., Ok, ..., OK}, the set of K different groups of
observation sequences, one per class; and, eventually, each
Ok = {O1

k, ..., O
Nk

k } as the group of Nk observation se-
quences for action class k. Then, parameters λ∗k, k = 1...K,
are estimated with maximum likelihood as:

λ∗k = argmax
λk

(

Nk∏
e=1

p(Oek|λk)) (7)

After training of the λ parameters, the action class, a∗k,
for an unseen sequence, Onew, can be chosen by maximum
likelihood as:

ak∗ : k∗ = argmax
k

(p(Onew|λk)), k = 1..K. (8)

where the likelihood of Onew in action class k,
p(Onew|λk), can be efficiently evaluated by the forward
or backward algorithm [20]. The Correct Classification
Rate (CCR) obtained with this method is reported in table
1. Table 1 shows that the discriminative prototype selector
achieves greater accuracy than the compared methods.

Table 1. Classification accuracy of a maximum-likelihood HMM
applied to feature vectors from different prototype selectors (c-dps,
c-cps, c-bps and c-rps).

Schuldt’s validation

Prototype selector CCR(%)

c-dps 67.80

c-cps 66.75

c-bps 64.05

c-rps 65.50

4.3. Evaluation of feature vectors with maximum
conditional likelihood training

In addition to the positions above, let Y =
{Y1, ..., Yk, ..., YK} be the set of K different groups of
ground-truth labels for the observation sequences in each
class; and each Yk = {y1k, ..., y

Nk

k } be the group of ground-
truth labels for theNk observation sequences of action class
k. Each such a label takes value in A, the set of action
classes. Here, the availabilty of the ground-truth labels al-
lows defining a different objective function, known as con-
ditional likelihood, for the setting of the λ parameters [29]:

L(λ;Y,O) =

K∏
k=1

Nk∏
e=1

p(yek|Oek, λk) (9)

Parameters λ = {λ1, .., λk, .., λK} are then selected to
maximize the conditional likelihood as in:

λ∗ = argmax
λ

(L(λ;Y,O)) (10)

The parameters estimated by maximizing (9) are more
promising for classification than those estimated with
the conventional likelihood since conditional likelihood
p(y′|O′, λ′) for a given class, y′, and meauserement, O′,
is, with different wording, the posterior probability of class
y′ given measurement O′. In essence, training the param-
eters with the conditional likelihood target maximizes the
posterior probability of the correct class labels over the en-
tire training set. As such, it is an example of maximum score
training [27].

However, maximizing the conditional likelihood for the
HMM is not trivial. Therefore, in this work we resort to



an approximation: at each iteration of the Baum-Welch al-
gorithm (which is guaranteed to increase the conventional
likelihood), we evaluate (9) and store the parameters. At
convergence of Baum-Welch, the value of the parameters
corresponding to the largest conditional likelihood encoun-
tered during the iterations is selected.

Table 2 shows the recognition accuracy with the maxi-
mum conditional likelihood criterion. Again, the proposed
discriminative selector, c − dps, achieves the highest accu-
racy. In addition, the proposed conditional likelihood train-
ing permits higher accuracy than conventional likelihood
training in most cases.

Table 2. Classification accuracy of a maximum-conditional-
likelihood HMM applied to feature vectors from different proto-
type selectors (c-dps, c-cps, c-bps and c-rps).

Schuldt’s validation

Prototype selector CCR(%)

c-dps 70.35

c-cps 68.85

c-bps 64.15

c-rps 65.50

4.4. Discussion

To position our work properly, it is very important to
state that current results on KTH are well in excess of 90%
accuracy [9]. The goal of our paper is not that of propos-
ing a more accurate action recognition method; rather, as-
sessing the comparative accuracy of discriminative proto-
type selection in a significant classification exercise. As
for what action recognition is concerned, we have gathered
empirical evidence that the graphs built by using SIFT key-
points as their nodes are rather unstable and noisy, and we
are working on the use of graph-cut techniques to substan-
tially improve nodes’ extraction [24]. In addition, the use-
fulness of discriminative prototype selection extends well
beyond action recognition: typical problems approached by
graph embedding include, for instance, fingerprint recogni-
tion, character recognition and general object classification
[5].

5. Conclusions and future work
In this paper, we have proposed a discriminative proto-

type selector for graph embedding and evaluated its use in
an application of human action recognition. In our action
recognition approach, an attributed graph is built in each
frame to represent the actor’s shape. Thence, a set of pro-
totypes is used to embed this graph into a point in vector
space. The sequence of vectors for a whole video depicting

an action is then collected as a time series, and the hidden
Markov model is used for action classification. The exper-
iments reported in the paper show that the proposed proto-
type selector allows accuracies that are 1.05÷1.50 percent-
age points higher than that of the best competing selector.
In addition, we have shown that an approximate maximum
conditional likelihood training of the HMM allows accura-
cies that are up to 2.55 percentage points higher than those
with conventional likelihood training. In the near future,
we plan to provide improvements to the graphs’ extraction,
extend our study to other action datasets, as well as exper-
iment with the discriminative selector over other domains
such as object and character recognition.

Acknowledgments.

The authors wish to thank the Australian Research Coun-
cil and its industry partners that have partially supported
this work under the Linkage Project funding scheme - grant
LP0990135 “Airports of the Future”.

References
[1] M. Belkin and P. Niyogi. Laplacian Eigenmaps for

Dimensionality Reduction and Data Representation.
Neural Computation, 15(6):1373–1396, June 2003. 2

[2] J. Blackburn and E. Ribeiro. Human motion recogni-
tion using isomap and dynamic time warping. In Pro-
ceedings of the 2nd conference on Human motion: un-
derstanding, modeling, capture and animation, pages
285–298, Berlin, Heidelberg, 2007. Springer-Verlag.
1

[3] E. Z. Borzeshi, R. Y. D. Xu, and M. Piccardi. Au-
tomatic human action recognition in videos by graph
embedding. In 16th International Conference on Im-
age Analysis and Processing, ICIAP 2011, 2011. 4

[4] T. Chen, H. Haussecker, A. Bovyrin, R. Belenov,
K. Rodyushkin, A. Kuranov, and V. Eruhimov. Com-
puter vision workload analysis: case study of video
surveillance systems. Intel Technology Journal,
9(2):109–118, 2005. 3

[5] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty
years of graph matching in pattern recognition. Inter-
national Journal of Pattern Recognition and Artificial
Intelligence, 18(3):265–298, 2004. 2, 6

[6] P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie. Be-
havior recognition via sparse spatio-temporal features.
In Visual Surveillance and Performance Evaluation of
Tracking and Surveillance, 2005. 2nd Joint IEEE In-
ternational Workshop on, pages 65–72. IEEE, 2006.
1

[7] D. Emms, R. Wilson, and E. Hancock. Graph em-
bedding using quantum commute times. Graph-Based



Representations in Pattern Recognition, pages 371–
382, 2007. 1

[8] X. Gao, B. Xiao, D. Tao, and X. Li. A survey of
graph edit distance. Pattern Analysis & Applications,
13(1):113–129, 2010. 2

[9] K. Guo, P. Ishwar, and J. Konrad. Action Recogni-
tion Using Sparse Representation on Covariance Man-
ifolds of Optical Flow. 6

[10] G. Hjaltason and H. Samet. Properties of embed-
ding methods for similarity searching in metric spaces.
IEEE Transactions on Pattern Analysis and machine
intelligence, pages 530–549, 2003. 3

[11] I. Laptev. On space-time interest points. International
Journal of Computer Vision, 64(2):107–123, 2005. 1

[12] D. Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer
vision, 60(2):91–110, 2004. 1, 3

[13] K. Murphy. Hidden markov model (hmm) toolbox
for matlab. online at http://www. ai. mit. edu/˜ mur-
phyk/Software/HMM/hmm. html. 5

[14] M. Neuhaus and H. Bunke. A probabilistic approach
to learning costs for graph edit distance. In Pattern
Recognition, 2004. ICPR 2004. Proceedings of the
17th International Conference on, volume 3, pages
389–393. IEEE, 2004. 2

[15] M. Neuhaus and H. Bunke. Automatic learning of
cost functions for graph edit distance. Information Sci-
ences, 177(1):239–247, 2007. 1, 2

[16] J. Niebles, C. Chen, and L. Fei-Fei. Modeling tem-
poral structure of decomposable motion segments for
activity classification. Computer Vision–ECCV 2010,
pages 392–405, 2010. 1

[17] E. Pekalska and R. Duin. The dissimilarity represen-
tation for pattern recognition: foundations and appli-
cations. World Scientific Pub Co Inc, 2005. 1, 2, 3

[18] H. Qiu and E. Hancock. Clustering and embedding
using commute times. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 29(11):1873–
1890, 2007. 2

[19] A. Quattoni, S. Wang, L. p Morency, M. Collins,
T. Darrell, and M. Csail. Hidden-state conditional ran-
dom fields. In IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2007. 1

[20] L. Rabiner. A tutorial on hidden Markov models and
selected applications in speech recognition. Proceed-
ings of the IEEE, 77(2):257–286, 1989. 3, 5

[21] K. Rieck and P. Laskov. Linear-Time Computation of
Similarity Measures for Sequential Data. Journal of
Machine Learning Research, 9:23–48, Jan. 2007. 2

[22] K. Riesen, M. Neuhaus, and H. Bunke. Graph embed-
ding in vector spaces by means of prototype selection.
In Proceedings of the 6th IAPR-TC-15 international
conference on Graph-based representations in pattern
recognition, pages 383–393. Springer-Verlag, 2007. 1,
2, 3, 4

[23] M. Rodriguez, J. Ahmed, and M. Shah. Action mach a
spatio-temporal maximum average correlation height
filter for action recognition. In Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE Confer-
ence on, pages 1–8. IEEE, 2008. 1, 3

[24] C. Rother, V. Kolmogorov, and A. Blake. Grabcut:
Interactive foreground extraction using iterated graph
cuts. ACM Transactions on Graphics, 23:309–314,
2004. 6

[25] B. Scholkopf, A. Smola, and K.-R. Muller. Nonlinear
Component Analysis as a Kernel Eigenvalue Problem.
Neural Comp., 10(5):1299–1319, July 1998. 2

[26] C. Schuldt, I. Laptev, and B. Caputo. Recognizing hu-
man actions: a local SVM approach. In Pattern Recog-
nition, 2004. ICPR 2004. Proceedings of the 17th In-
ternational Conference on, volume 3, 2004. 1, 3, 4,
5

[27] Q. Shi, L. Wang, L. Cheng, and A. Smola. Discrimina-
tive human action segmentation and recognition using
semi-markov model. In Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on,
2008. 5

[28] S. Singh, S. Velastin, and H. Ragheb. Muhavi: A
multicamera human action video dataset for the eval-
uation of action recognition methods. In Advanced
Video and Signal Based Surveillance (AVSS), 2010
Seventh IEEE International Conference on, pages 48–
55. IEEE, 2010. 1, 3

[29] C. Sutton and A. McCallum. 1 an introduction to
conditional random fields for relational learning. In-
troduction to statistical relational learning, page 93,
2007. 5

[30] A. Vedaldi and B. Fulkerson. VLFeat: An open and
portable library of computer vision algorithms, 2008.
3

[31] R. Wilson, E. Hancock, and B. Luo. Pattern vec-
tors from algebraic graph theory. IEEE Transactions
on Pattern Analysis and Machine Intelligence, pages
1112–1124, 2005. 1, 2

[32] J. Yamato, J. Ohya, and K. Ishii. Recognizing human
action in time-sequential images using hidden Markov
model. In Computer Vision and Pattern Recognition,
1992. Proceedings CVPR ’92., 1992 IEEE Computer
Society Conference on, pages 379–385, 1992. 1


